Research Group of Prof. Dr. M. Griebel
Institute for Numerical Simulation
maximize
next up previous
Nächste Seite: Inhalt des Praktikums Aufwärts: Partikel_Praktikum Vorherige Seite: Partikel_Praktikum

Hintergrund des Praktikums

Die numerische Simulation technisch-physikalischer Abläufe gewinnt in jüngster Zeit immer mehr an Bedeutung. So lassen sich mit ihrer Hilfe die Zahl teurer Experimente mit aufwendigen Versuchsaufbauten in Industrie und Forschung aller naturwissenschaftlichen Bereiche verringern. Darüber hinaus erlaubt die numerische Simulation, auch in solchen Fällen Aussagen zu treffen, in denen dies auf Grund technischer Unzugänglichkeiten sonst nicht möglich wäre oder sich ein praktisches Experiment von vorneherein verbietet.

Im Gegensatz zur Eulerschen Sichtweise, bei der die das betrachtete Material beschreibenden Größen in im Raum festsitzenden Kontrollvolumen oder Punkten bestimmt werden, liegt der sogenannten Lagrangeschen Beschreibung das Konzept der sogenannten Fluidelemente zugrunde, die in der Theorie als unendlich klein angesehen werden und nicht festsitzend sind, sondern sich mit dem Fluid mitbewegen. Betrachtet man diese jedoch als nicht infinitesimal klein, so wird das Fluid durch eine endliche Anzahl von Fluidelementen, sog. Partikeln, approximativ beschrieben. Sowohl die Geschwindigkeit als auch dem Fluid zugeordnete Größen wie Dichte oder Massenverteilung werden dann allein durch die Verteilung der Partikel wiedergegeben. Herkömmliche Methoden, die auf der Eulerschen Betrachtungsweise aufbauen, wie z.B. konventionelle Finite Element oder Finite Differenzen Verfahren, erweisen sich bei vielen Problemen mit wechselnder Geometrie, wie z.B. bei der Untersuchung von Verformungen von Materialien oder der Ausbreitung von Rissen, als problembehaftet, da ein ständiges Anpassen der Gitterstruktur an die sich ändernde Geometrie erforderlich ist. Sogar bei Problemen, bei denen nur wenige Gitterpunkte nötig sind, kann die Gittererzeugung einen großen Teil der Rechenzeit beanspruchen und sogar teurer sein, als die Konstruktion und Lösung der entstehenden diskreten Probleme.

Die aus der Lagrangeschen Sichtweise entstehenden Partikelmethoden sind, im Gegensatz zu den Eulerschen Methoden, auch zur Simulation von Problemen geeignet, denen kein Kontinuum zugrunde liegt, wie z.B. bei der Untersuchung des Fließens sog. granularer Materialien oder der Simulation von hochverdünnten Gasen mittels der Boltzmanngleichungen. Dafür sind sie i.a. mit dem Nachteil einer schlechteren Approximationsgüte behaftet. Weitere Anwendungsbereiche von Partikelmethoden sind z.B. die Molekülmechanik und Moleküldynamik (siehe Abbildungen für Beispiele aus der Moleküldynamik), die Fluidmechanik, die Simulation sog. dünner Filme und auch Probleme aus der Astrophysik. Dort läßt sich mittels Partikelmethoden z.B. die Entstehung von Spiralgalaxien numerisch simulieren. Hier ist im einfachsten Fall die Wechselwirkung zwischen einzelnen Partikeln durch ein Kraftgesetz (z.B. über die Gravitation) gegeben und die Bewegung der einzelnen Partikel kann mit Hilfe der Newtonschen Bewegungsgleichungen bestimmt werden. Wechselwirkt dabei jedes Partikel mit jedem anderen, so muß zur Berechnung der Kraft auf jedes einzelne Partikel eine Summe über alle anderen Partikel gebildet werden. Ein naiver Zugang führt hier zu einem Algorithmus mit einem Aufwand der Größenordnung $ N^{2}$, wobei $ N$ die Anzahl der Partikel bezeichnet. Für großes $ N$, wie es für eine hinreichend genaue Beschreibung des Problems nötig ist, sind solche Algorithmen jedoch zu aufwendig und benötigen zu viel Rechenzeit. Mit Hilfe rekursiver bzw. hierarchischer Verfahren ist es möglich, den Aufwand auf $ O(N \log(N))$ bzw. sogar $ O(N)$ zu senken, d.h. der Aufwand wächst nur noch linear mit der Anzahl der verwendeten Partikel. Analoge Betrachtungen gelten für andere durch Potentiale gegebene Wechselwirkungen. Eine weitere Beschleunigung der Algorithmen ist durch Parallelisierung der sequentiellen Programme erreichbar. Parallele Rechensysteme (MIMD-Rechner, Netzwerke von Arbeitsplatzrechnern) ermöglichen dann immer realistischere dreidimensionale Simulationen komplexer zeitabhängiger Vorgänge. Ziel des Praktikums ist es, daß die Studierenden erste praktische Erfahrungen in den Bereichen

für den erfolgreichen Einsatz dieser Techniken des wissenschaftlichen Rechnens sammeln können.


next up previous
Nächste Seite: Inhalt des Praktikums Aufwärts: Partikel_Praktikum Vorherige Seite: Partikel_Praktikum
Lukas Jager 2002-08-06