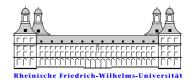


Praktische Mathematik I



Aufgabenblatt 6

Ausgabe: 18.11.2004, Abgabe der Lösungen: 25.11.2004, 10:10

Abgabe der Programmieraufgabe: 6.-10.12.2004, genauer Termin nach Vereinbarung.

Aufgabe 21:

Bestimme die Eigenvektoren, die Eigenwerte und die Determinante folgender Matrizen:

$$Q_v = I - 2vv^H$$
 für Vektoren $v \in \mathbb{C}^n$ mit $||v||_2 = 1$

$$R_\varphi = \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix}$$
 (Rotation in 2D)

Zeige, dass jede Spiegelung in \mathbb{R}^2 an einer Geraden durch den Nullpunkt von der Form

$$S_{\varphi} = \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix}$$

für ein geeignetes $\varphi \in \mathbb{R}$ ist.

(10 Punkte)

Aufgabe 22:

Sei $v \in \mathbb{C}^n$ mit $||v||_2 = 1$. Zeige die folgenden Eigenschaften der Householder-Reflektionen:

- a) $Q_v^H = Q_v$
- b) $Q_v^2 = I$.
- c) $Q_v(s + \alpha v) = s \alpha v$ für alle $\alpha \in \mathbb{C}$ und alle Vektoren $s \in \mathbb{C}^n$ mit $s^H v = 0$. Q_v beschreibt also eine Spiegelung an der senkrecht auf v stehenden Hyperebene durch den Nullpunkt.
- d) Die Matrix $S \in \mathbb{C}^{n \times n}$ beschreibe eine Spiegelung, d.h. es gebe einen Unterraum $U \subset \mathbb{C}^n$ mit $\dim_{\mathbb{C}} U = 1$, so dass Su = -u für alle $u \in U$ und Sx = x für alle $x \in U^{\perp}$. Zeige, dass S eine Householder-Reflektion Q_v ist, die bis auf Skalierung von v mit dem Faktor -1 eindeutig ist.
- e) Zeige, dass für jede unitäre Matrix $Q \in \mathbb{C}^{n \times n}$ und jeden Vektor $x \in \mathbb{C}^n$ gilt:

$$||Qx||_2 = ||x||_2.$$

Zeige, dass jede Matrix $Q \in \mathbb{C}^{n \times n}$ mit dieser Eigenschaft unitär ist. Zeige ferner, dass jede unitäre Matrix Q den Bedingungen

$$||Q||_{2,2} = 1$$
 und $\operatorname{cond}_2 Q = 1$

genügt. (10 Punkte)

Aufgabe 23:

Bestimme die QR-Zerlegungen der Matrizen

$$A = \begin{pmatrix} 0 & -2 & -1 \\ 0 & 0 & -1 \\ 4 & 5 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} \frac{4}{\sqrt{3}} & \frac{6}{5\sqrt{3}} & \frac{14}{\sqrt{3}} \\ 0 & \frac{-3}{5} & 0 \\ \frac{2\sqrt{2}}{\sqrt{3}} & \frac{9\sqrt{2}}{5\sqrt{3}} & \frac{7\sqrt{2}}{\sqrt{3}} \\ -2\sqrt{2} & -\sqrt{2} & 3\sqrt{2} \end{pmatrix},$$

A mittels Householder-Reflektionen und B mittels Givens-Rotationen.

(10 Punkte)

Aufgabe 24:

Sei $A \in \mathbb{C}^{n \times n}$ eine Matrix, und seien $a_1, a_2, \dots, a_n \in \mathbb{C}^n$ ihre Spaltenvektoren. Zeige die Abschätzung

$$|\det A| \le \prod_{i=1}^n \sqrt{a_i^H a_i}.$$

(10 Punkte)

Programmieraufgabe 2:

Schreibe ein C-, C++- oder Javaprogramm, das die QR-Zerlegung einer Matrix $A \in \mathbb{R}^{n \times n}$ mittels Householder-Transformationen berechnet. Löse damit die folgenden linearen Gleichungssysteme Ax = b:

$$A = \begin{pmatrix} 2 & 1 & -1 & 3 \\ -2 & -1 & 3 & 4 \\ -3 & 0 & 2 & 1 \\ 0 & 1 & 3 & -2 \end{pmatrix} \qquad b = \begin{pmatrix} 6 \\ 1 \\ -5 \\ -3 \end{pmatrix}$$

b)
$$A = \left(\frac{1}{i+j-1}\right)_{i,j=1,\dots,n} \quad \text{und} \quad b = \left(\sum_{j=1}^n \frac{1}{i+j-1}\right)_{i=1,\dots,n}$$

für n = 5, 10, 20, 100.

Interpretiere die Ergebnisse. Zur Kontrolle: die exakte Lösung für b) ist $x = (1, ..., 1)^T$. (10 Punkte)