Institut fur Numerische Simulation
Rheinische Friedrich-Wilhelms-Universitat Bonn

Wegelerstrafle 6 - 53115 Bonn - Germany

phone +49 228 73-3427 * fax +49 228 73-7527
www.ins.uni-bonn.de

P. Zaspel, M. Griebel

Solving Incompressible Two-Phase Flows on
Multi-GPU Clusters

INS Preprint No. 1113

October 2011

Solving Incompressible Two-Phase Flows on Multi-GPU Clusters

P. Zaspél**, M. Griebef*

3Institute for Numerical Simulation, University of Bonn,géterstralRe 6, 53115 Bonn, Germany

Abstract

We present a fully multi-GPU-based double-precision sofae the three-dimensional two-phase incompressible &aStokes
equations. It is able to simulate the interaction of two #uiite air and water based on a level-set approach. Highrdiuite
difference schemes and Chorin’s projection approach facesm@nd time discretization are applied. An in-depth peréorce
analysis shows a realistic speed-up of the order of thre@tmparing equally priced GPUs and CPUs and more than a daublin
energy efficiency for GPUs. We observe profound strong arakwealing on two different multi-GPU clusters.

Keywords:
Graphics Processing Units; Multi-GPU; Two-Phase FlowsjidlaStokes Equations; Level-Set Method; Finite Diffezen

1. Introduction their shared-memory parallel two-phase flow solver by alsing
GPU-based Poisson solver. We are also aware of unpublished

Moving forward to Exascale computing, the high perfor-\ o on a multi-GPU two-phase flow solver by the group of
mance computing (HPC) community has recognized the applin gy et 4. at the Tokyo Institute of Technology. Howeverthie

cation of massively parallel hardware as one of the key ingrep et of our knowledge, there is no publication on a grid-tiase
dients to satisfy future computing requirements. One tpe 0o ple-precision fully GPU-based parallel solver for the-t
this hardware are graphics processing units (GPUS). They ahpaqe incompressible Navier-Stokes equations, whicHéstab

a prototype for a general class of many-core processors Wit e on distributed memory multi-GPU clusters.

a high thread-parallelism which is expected to dominateréut In this paper, we now present such a two-phase flow solver.

compute clusters. Consequently, there is now a growing nun]- .) . .
- | . L t extends the introducing work by the authors in [12]. Like o
ber of multi-GPU-based HPC systems for which smentlstsslneeorigmaI in-house CPU fluid solver NaSt3DGPF [13, 14, 15, 16]

appropriate numerical software. o . O
ppropria‘e N sorware I the new GPU solver uses a finite difference discretizatioa on
An important area for multi-GPU applications are compu- L . :
staggered grid in complex geometries and the continuum sur-

tational fluid dynamics (CFD) simulations. Commercial CI:Dface force approach to simulate two fluid phases like air aad w
package vendors only slowly start to adapt this technolBgy. ter. The fluid phases are distinguished by a level-set fancti

in academia, several groups have already published resuits A range of applications e.g. in the domain of droplet / bubble

multi-GPY codes in CFD, e.g. for Lattice-Boltzmann appli- dynamics [16] or water ways simulations [14] is thus able to

cations [1, 2], compressible fluids [3, 4] or meteorology. [5] : .
For grid-based incompressible flow simulations, which ae d profit from the performance available on large GPU clusters.

scribed by the Navier-Stokes equations, Cohen and Molemake Note here that this pub!icati(_)n contains several signitica_m
were in [6] among the first to show multi-GPU results. They im-improvements and extensions in contrast to the authors’ firs
plemented a finite difference/volume code for single maghin Publication on this topic [12]. The most important improve-
multi-GPU parallelism. The first truly distributed-memory Ment is based on the seamless and full usage of GPUs for all
MPI-based Navier-Stokes solver with finite differences wascomputations. Now, besides just the Poisson solver and the
done by Jacobsen et al. [7]. Later, this group also showed e)€vel-set reinitialization, also all other GPU parallelite parts
tensions to this solver including a full geometric multibfg]. ~ Of the described numerical method are completely impleetent
Other multi-GPU implementations of the Navier-Stokes equa®? GPUs. This eliminates the large overhead of hundreds of
tions are based on finite elements [9, 3]. GPU~CPU dfata transfers as .further explalneq in Section 3.1.
In our current research, we are especially focusedwan Altogether, this leads to a major performance improvemént 0
phaseflow applications based on the Navier-Stokes equationgN0re than 30 percent compared to the authors paper [12] which
Kelly presented in [10] a single-GPU accelerated two-phasé mMore precisely described in the dedicated Section 4.5. We

solver using the level-set method. Kuo et al. [11] acceterat 2dditionally integrate a methodology based on performaece
Watt and performance per Dollar benchmarks, which allows to

— . have more fair performance comparisons, see Section 41, 4.
*iggrr‘rce'zs(')ﬁgﬁzsgﬁmpg author and 4.7 also with specific focus on Fermi GPU code optimiza-
Email addresseszaspel @ ns. uni - bonn. de (P. Zaspel), tions. Finally, we show multi-GPU scaling on a 48 Fermi GPU
gri ebel @ns. uni - bonn. de (M. Griebel) cluster in Section 4.6.

Preprint submitted to Computers & Fluids January 23, 2012

The remainder of this article is organized as followsSéa-

material derivative2! is given by 2¢ := 0+ (u- O)d. In the

tion 2, we introduce the governing equations and the numerisurface tension force terax (@)d(¢) Ogof equation (1)K iden-
cal methods applied in our solveBection 3 presents details tifies the curvature of the free surface andenotes the surface

of the GPU implementation. Then, fBection 4, we review

tension coefficient which is a material constant. Furthean®

GPU benchmarking in general and give an in-depth perforis the Dirac-delta functional. Finallg stands for volume forces

mance analysis of the multi-GPU code. $action 5, we dis-
cuss our results and provide final conclusions.

e.g. gravity andS is the stress tens@:= Ou+ {00t} ". Equa-
tion (2) is the continuity equation and describes the incasg-

The major contributions of this work are as follows: ibility constraint. The last equation (3) models the traorspf

)] the level-set function i.e. the dynamics of the free surface

e For the first time, results of a fully GPU-based double- \yg giscretize the above equations with the finite difference
precision solver for the two-phase incompressible Naviery,athod on a staggered uniform grid. For numerical reasoss, w
Stokes equation; discretized on a grid using the Ievel-sea{pmy a smoothing [18] to the Heaviside functiomlg) and
method are published. the Dirac-delta functional in as-environment of the free sur-

e The solver is an MPI parallel multi-GPU code which face. Chorin’s projection approach [20] then leads to atimiu
scales on multi-GPU clusters. It thus fulfills the require- Method which is described in detail in Algorithm 1. Here, we
ments for modern HPC systems. emplqyed aflrst—or.der Eulgr tlme integration to get a sinfiqie

mulation. In practical application problems, we use a sdeon

e We present general guidelines for efficient and future-order Adams-Bashforth time integration to compute therinte
safe GPU implementations and give best practice rules fomediate velocity field and to transport the level-set fumtti
multi-GPU benchmarking. The time derivative for the artificial timein the level-set reini-

tialization process is discretized by a third-order Rukgéta

method. Note that we have to reinitialize the level-set func
tion after each transport step to recover the distance psope

We describe three-dimensional incompressible two-phasé’® = 1 which is necessary for a correct evaluation of the free
flow problems using the Navier-Stokes equations which ardurface’s normal and curvatuke All transport terms and the
extended by a level-set formulation [17] to cope with Ioh(,jlse_!evel—s.et gradient in the relnltlal|;at|on step are disizesl us-
dependent densities and viscosities [18]. Surface terdfeats N9 @ fifth-order weighted essentially non-oscillatory (WEN
at the free surface between the fluid phases are modeled by tReneme, while the diffusion term in the second step is coeput
continuum surface force method [19]. This approach has beefsing second-order central differences. The Poissoniequat
previously described in detail in [16] for our CPU-baseddiui discretized by a second order method and solved with a Jacobi
solver NaSt3DGPF. We here just give a short sketch of the ide®reconditioned conjugate gradient (CG) method for spanse |

The model for two-phase incompressible fluids can be de€ar Systems. Here, the Poisson equation’s non-constafit coe
scribed in a set of equations with cients, namely the density jump for two-phase flows, lead to a

high condition number for the linear system and thus to a slow
Du convergence of the iterative solver. It is therefore a Wwalbwn

p(@ﬁ +0p="0"(K(9)S) ~ok(@d(@LUe+p(@)d, (1) fact that the Poisson solver dominates the overall run-fone

0-d=0, (2) suchasolution method.

_ The full GPU solver supports different kinds of boundary
0p+d-Ue=0,) conditions. These include slip and no-slip solid boundarie-
flows and outflows can be controlled by Dirichlet and homoge-
neous Neumann boundary conditions for the velocity field. We
introduce complex geometries by flagging out some cellsef th
simulation domain and apply appropriate boundary corattio

at the fluid-solid interface cells of the obstacles.

2. Governing equations and numerical solution

where equation (1) is the momentum equation with timibe
fluid velocity T, pressurep and the level-set functiop. The
level-set function, a signed distance function withp| = 1, im-
plicitly describes the free surfaée = {X € Q | ¢(X) = 0} and
allows to define phase dependent densitigy and viscosities

H(@) by
H(9),
H(9),

P(®) == p2+(P1—pP2)

3. Implementation
H(P) =t + (b — M)

The GPU implementation is based on the well-known paral-

0 ife<O, . . - .
:)1 (p_ lel programming extension CUDA from Nvidia. We basically
with H(@):={ 35 if ¢=0, . . . ;
1 ife>0 map one GPU thread to one grid point and linearize the three-
’ dimensional grid. All operations are done per-cell with MBI
<0 if XeQq, (single instruction multiple data) approach.
and @Xt):=¢ =0 ifXely,
>0 if XeQ,. 3.1. Porting process

Here,Q; andQ, are the domains of the two fluid phases and We started our GPU implementation based on the existing
p1, P2, W1 andp denote the respective material parameters. ThéMPl-parallel CPU code NaSt3DGPF. Since our approach in

2

Algorithm 1 (Chorin’s projection approach) 3.2. Code design

forn=1,2,... do: Our GPU implementation follows on some basic principles:
First, we always use double precision calculations. This is
1. set boundary conditions faf necessary since we often simulate problems at small scales
2. compute intermediate velocity fielti: like millimeters or less which requires high precision. Eve
o — on though mixed-precision approaches might give improved per
5 - —(Un'D)UnﬂLWD'(U(@)Sn) formance for some parts of the code, we decide to stick to
1 double-precision. We believe that GPU hardware will imgrov
———— ok(@"d(@"O¢" +g when it comes to double-precision performance in the future
(@) anyway.
3. apply boundary conditions and transport level-set Furthermore, we are highly interested in keeping the GPU
function: implementation as simple as possible. Thus, we try to mizeémi
o' =¢" +at (" 0g") memory-hierarchy specific optimizations. We assume that fu

ture GPU hardware will be more and more automatically cache-

4. reinitialize level-set function by solving oriented. This view is supported by the latest developmients

9:d + sign(¢*) (|0d| — 1) = 0 & = ¢ the market. As a consequence, the only highly memory opti-
’ mized (thus shared-memory using) parts of the code are Igloba
5. solve the pressure Poisson equation witht = d: reduction operations. For these, we use modified versiotheof

reduction kernels from the CUDA software development kit.

&t
0 =50 “+1>=D-n*
(p(qﬁ”) P

6. apply velocity correction: Even though we stay with this simplified implementation
approach which largely avoids shared memory, there atle stil
some optimizations that should be done for high performance
on GPUs. For example, we see the behavior of older GPU hard-
ware (i.e. preFermi GPUSs) to perform less efficient when using
GPU functions i.ekernelswith a higher amount of calling pa-
rameters and a high number of operations: Older GPUs store al
kernel parameters in the loaagistersof each GPU thread. We

- : even nowadays see a largely growing register use with ggpwin
forward and ported now the remaining parts of the fluid sciver per-kernel instruction count. This might be caused due wa n

main loop step by step (including appropriate GRUCPU data . . : :

transfers) to the GPU. The advantage of this approach is evg?t:;neil;tr:gstirr liﬁfet;ﬁt?sescgrr:sr':ﬁ@ ??nx\tl\elz?jy VSVZ]C:ft?r? ﬁ;t\'/ Zuto

dent. We always had a fully working and previously validated g per ' :

(cf. e.g. [14]) CPU code to compare with, such that the Cor_force the compiler to move data from the very fast registers t
- €9 . P ' - local memoryi.e. the slow general GPU memory, which is of-

fbn calledregister spilling This can cause a huge performance

the porting process by direct comparison of the CPU and th?oss on older GPUs and might still harm the performance on the
GPU data fields. In fact, we almost always saw equal results

. . . newerFermitype GPUs. To overcome this specific drawback,
up to machine accuracy. The only exception to this were g¢loba . : .

. ; . : . . we split up big computation kernels to smaller ones as ajread
reduction operations which obviously have slightly diéfet re- discussed in [12] for the example of the WENO computation
sults based on the different summation orders. Neverthales P P

: : R kernel.
still observe equal results up to discretization error amer- ' . L
gence order. The compute configuratiofor kernel execution is the map-

ping of parallel threads to the so-callsgmmetric multiproces-
After we finished the stepwise porting of the solver compo-sors (SM)fthe GPU. Choosing an appropriate mapping for our
nents we centralized all data fields and removed unnecessakind of per-cell parallelism is quite easy. We can often maxi
data exchanges. Consequently, we now copy all simulatitan damize the performance by setting the number of threads per SM
to the GPU once at the beginning of the application. Theref{i.e. theblock siz¢to 256 or 512.
after, almost no GPWY-» CPU data transfers are necessary dur- As already mentioned, we support several types of boundary
ing the simulation. This results in an implementation whichconditions (slip, no-slip, Dirichlet, Neumann, periodie) va-
largely profits from the existing GPU performance and allowsriety of finite difference stencils, complex geometries avel
us to work around the typical PCI Express bus data exchangemploy boundary cells (i.e. halo/ghost cells) for the daliab-
issues as much as possible. Exactly this is the major advarion. Therefore, the original CPU code loops over the three-
tage of afull GPU port over just a GPU-accelerated code. Indimensional data fields with a lot of different data acceds pa
the final implementation, the only remaining CPU-basedspartterns (see Figure 1). However, mapping these patterns to GPU
are now the configuration file parser, the data field setup, biparallelism is not obvious, since the heavy use of condilign
nary/visualization file input/output and parallel comnuation. which is typically accepted for CPUs, might cause a dramatic

3.3. GPU specific optimizations

3t
p(er1)

l—jn+1 — 0 -

D pn+1

[12] to use the GPU as accelerator for the Poisson solvetend t
level-set reinitialization showed motivating results, meved

we overlap the large sparse matrix-vector product with tita d
field's boundary data exchange. The only non-overlapped par
here is the final matrix-vector product application on thariob

ary cells which is done after the data transfers. Overal, th
method leads to a very nice scaling for the Poisson solver and
the full multi-GPU code, cf. Section 4.6. On pre-Fermi GPU
hardware, we are not able to apply this approach to the remain
ing parts of our code, since here, the boundary-cell-only ap
plication for other compute kernels is too costly. Howeear,
appropriate code optimization for a Fermi-based GPU dluste
future work.

Another important multi-GPU optimization step is an effi-
cient reordering of scattered boundary data into one coaotia
data block in the fast GPU memory before data is copied to the
CPU memory. Of course, we use so-calf@dned memoryor
all our data exchanges to optimize the bandwidth.

_ , _ o The overalimulti-GPU implementation, as already described
Figure 1: Complex geometries and boundary cells in the finifferénce
scheme lead to irregular data access patterns for data figldghis 2D ex- n [;I'Z]’ IS reallze_d_ by mapplr!g the domains of the orlglnal do
ample which includes a discretized circular solid geometgputations have ~ Main decomposition parallelization of the CPU MPI approach
only to be done for the colored cells. directly to the GPU. Thus, one CPU core/process handles one
GPU.

loss in performance on the GPU. To work around this, we pre-

compute appropriate Boolean data field access patternsonce 4. Performance results

the CPU before the main compute loop and move them to the

GPU. Consequently we just have to include one conditionzl an4.1. Best practice in GPU benchmarking

one additional global read per thread to handle customiaeal d = /<t papers on GPU computing discussed performance by

accesses. Our measurements show a performance gain of abgyinsaring the run-times on one GPU and one CPU core. This
25 percent for this approach in the relevant GPU kernelstwhic o, 14 rison of course was not fair. Instead, it is more reason
results in an |mproyed overall code run time. Obviouslysthi 4yt compare one CPédcketwith one GPU. This means that
leads to a slightly higher memory use on the GPU. one compares a multi-core implementation on e.g. four CPU
]] cores with the performance of one GPU. But, even this type of

3.4. Moving forward to multi-GPU comparison may be questionable if it is not clearly stateitivh

In standard MPI-based CPU parallelization implementation CPUs and GPUs are compared. From the CPU perspective, one
we always have to copy data from the system memory to thenight benchmark dual-/quad-/hexa- or even octo-core CPUs
network adapter which then performs the actual data tremsfe which of course are all different in their performance cleara
For parallel multi-GPU implementations, we additionalgve teristics, but are installed in one socket. Moreover, tleist
to transfer the data between the GPUs and the CPUs. Furthezeveral generations and classes of GPUs, on the market.
more, there is an uneven balance between the actual floating We therefore want to advocate the conceptpaformance
point performance of GPUs and the GRICPU data transfer per dollar andperformance per Wattn the first approach, we
rates. That is, GPUs can compute much faster than we catomparesimilar pricedhardware. To this end, it is still unclear
transfer the data to the CPU. This performance bottlenea&-he if the price of two full systems or just the hardware price of
ily hampers all multi-GPU parallelizations if there is n@s@al ~ GPUs and CPUs should be opposed. On one hand, one always
optimization for a good scaling taken into account. has to buy a CPU if one wants to use a GPU. On the other hand,

The authors’ introducing work [12] on accelerating the dis-one can buy a quite cheap CPU (up to an order of magnitude
cussed fluid solver with multi-GPU support already outlinedless expensive) and apply it just as a controller for the GPU.
the important steps of such an optimization. We here shortlA perfectly fair system-to-system comparison could only be
recall these. One key step is to overlap computation and condone using a mixed GPU and multi-core CPU code. To shorten
munication as e.g. proposed in [21]. Modern GPUs are able tthe discussion, we focus here only on the direct hardwaoe pri
exchange data with CPU memory while performing computacomparison of one GPU and appropriate CPUs, since for highly
tions. They can also compute in a non-blocking way, i.e. CPUspecialized GPU systems, the controlling CPUs in genesdl co
and GPUs can compute independently. The idea is to petess than ten percent of the GPU price. We believe that tiis pe
form a time-intensive GPU computation while the full data ex formance per dollar analysis allows us to have a quit réalist
change between GPU, CPU and the network interconnect i®ok at the real commercial advantage of GPU computations.
done. Thus, one is able to hide most of the time needed for the The other metric for performance shouldgerformance per
data exchangbehindthe GPU computation. We can apply this Watt That is, we measure and compare the required power con-
strategy in our iterative solver for the Poisson equatiomere sumptions for a given simulation task. We expect this apgroa

4

to become more and more important especially in connectior

with the Green IT discussion. Beside of the obvious environ-

mental advantages of smaller carbon footprints for larga da

centers, power consumption is clearly related to energiscos

This is why large companies will be more and more interested

to acquire power efficient hardware. Furthermore, ongoixg E —
ascale projects address power consumption as a key issue fi il i \ ‘

the next generation of compute clusters since the current pr [—'—-(‘U*— T “————-L——.
cessor technology will not scale due to power limitationse W
therefore also perform a power consumption analysis for our
benchmarking hardware and the developed multi-GPU code.

4.2. Benchmark setup

For a performance analysis, we use the following GPU and
CPU setup: Our first in-house GPU system is an 8-GPU-cluster
built by two workstations with an Intel Core i7-920 CPU at@.6 Figure 2: Our performance benchmark example is an air bublifeg iiis water.
GHz which are each attached to a Nvidia Tesla S1070 GPU syShe visualization was done following [22].
tem containing four GT200 Tesla GPUs (which are effectively
four M1060 GPUs). The compute nodes are connected by a
Mellanox ConnectX QDR 40G InfiniBand interconnect. Sinceprohlem at a grid resolution of 256256 x 128 takes about 51
the described GT200 GPUs have (at the time of writing this paminutes on the full six-core Xeon processor.
per) each a price which is comparable to an Intel Xeon X5650
six-core CPU with 2.66 GHz, we take a standard 1U compute.3. Performance expectations

node with this CPU for comparisons in our performance per The original CPU-based fluid solver NaSt3DGPF is a re-
Dollar analysis. The second in-house GPU system contains garch code which has been developed over more than a decade.
single Nvidia Tesla C2050 GPU with the neweermigener- |t is presently applied in various cooperations and prsject
ation GF100 GPU core which costs approximately twice theConsequently, this code is optimized for performance oaly t
price of the M1060 GPUs. For the perf/Dollar benchmark, wea point such that it is still readable and expandable. On the
therefore compare it with a dual-socket system thattha&s other hand, the new GPU code has been developed over a few
Intel Xeon X5650 CPUs with in total 12 CPU cores. All in- months in net effective development time and is also not-over
house benchmarking systems use Ubuntu Linux 10.04, Opemyptimized in the sense of heavy shared-memory use or micro-
MPI, the GCC 4.4 compiler and the Nvidia CUDA Toolkit 3.2. henchmarking. We therefore think that this is a sufficiefaly
We compile the GPU code with the optimization fla@3 and base for a performance comparison.
the CPU code with@8 - mar ch=nati ve. To perform speed-up \We now look at the different hardware platforms to judge the
and scale-up tests for a larger GPU count, we also got acceggsults presented in the next sections. Table 1 gives tloeehe
to the GPU cluster of the Center for Computing and Commusical peak performance values in double-precision floaiogy
nication at the RWTH Aachen University, Germany. We usegperations and memory bandwidth. Note that we used non-
up to 48 Fermi-type GPUs, Nvidia Quadro 6000. They areeCC results for the GPUs. ECC-protected GPU calculations
installed in double-GPU systems with two Intel Xeon X5650 have a reduced memory bandwidth by at least 8 percent. The
CPUs which are connected by QDR InfiniBand. The softwareable also specifies the speed-up ratios between the hardwar
stack is Scientific Linux 6.1, GCC 4.4.5, OpenMPI 1.5.3 al’ldthat we will compare in our test. As a matter of fact, the di-
CUDA 4.0.17. rect comparison of raw theoretical peak performances @noft
Our benchmarking problem is (similar to [12]) a rising bub- misleading, since these numbers do not reflect real apjolicat
ble of air inside a tank of water with surface tension eff¢sé® performance. However, it allows us to get a first feeling for
Figure 2). The bubble has a diameter of 6 cm and the water tartke achievable speed-ups. One interesting result is thtetim
has a side length of 20 cm. In our simulations, the bubble beraw double-precision floating-point performance for the2GT
comes torus-shaped over time, which complies with experime GPUs. However, since the most time consuming part of our
tal results in [23]. This kind of example is both represeéméat code, i.e. the sparse iterative solver, is typically merooynd,
for some of our applications and computationally challeggi the corresponding memory bandwidth differences are egdect
We always measure wall-clock times including all requiiett to be the dominant performance limiters. Therefore, we Ehou
ings for GPU~CPU data transfers. Computations on the CPUpe satisfied if we see speed-ups in the range of two to three in
and on the GPU are performed in double precision. Since ouur performance per dollar analysis.
fluid solver uses adaptive time step sizes, we measure the run
time required in the main loop to compute a fixed number of4.4. Single-GPU speed-up analysis
20 time steps instead of a fixed simulated physical time to get Figure 3 shows the single-GPU speed-ups for the older
comparable results. A calculation of 20 time steps of ourehod GT200-based GPU and the new Fermi generation GPU. We get

5

] CPU/GPU type| double-precision floating-point peak performariceatio | peak memory bandwidth ratio |

Intel Xeon X5650 ~64 Gflops 32 GB/s
Nvidia M1060 (no ECC) 78 Gflops 1.2x 102 GB/s 3.2x

two Intel Xeon X5650s ~128 Gflops 64 GB/s
Nvidia C2050 (no ECC) 515 Gflops 4x 148 GB/s 2.3x

Table 1: CPUs and GPUs have different performance charstitsri The ratios reflect the speed-ups between the groupeld &rd GPUs with respect to double-
precision floating-point performance and memory bandwidthogdfhumbers for the CPUs are accumulated values for the 6 / Kkphgores and were extracted

from the Top500 list [24].

I GT200 GPU vs. 6-core Xeon CPU
4 |- |10 GF100 GPU w. ECC vs. dual 6-core Xeon CPU B
I8 GF100 GPU w/o ECC vs. dual 6-core Xeon CPU

351 3.42

Speed-up on one GPU

643 1283 256 x 1287 256% x 128
Simulation Grid Resolution

Figure 3: Speed-ups of single GPUs relativsitailar-pricedmulti-core CPUs
for different resolutions and different GPU generations.

2.5
In no extra compile options
] -Xptxas -dlcm=cg
] -maxrregcount=20
2 I8 -xptxas -dlem=cg -maxrregcount=20 b

151 .
1231.24 1.231.25 1.27

Poisson solver speed-up on a Fermi GPU for sm_20 code

large shared memory large L1 cache

Figure 4: The pressure Poisson solver can be accelerateditohisg from
code compilation for compute architecture 1.3 to the featuméehed 2.0 ar-
chitecture on a Fermi GPU. Some compiler flags allow furthemaigtitions.

better performance for higher grid resolutions. This ispdsl
behavior for GPUs since the cost-intensive global memotg da
requests can be better overlapped for computations withehig
work loads per GPU. However, the performance increase has to
stagnate for some problem size, if the maximum floating point
performance or the maximum memory bandwidth limit is hit
and interleaving of memory fetches is no longer possiblés Th
stagnation can be clearly seen for the slower GT200 GPU but is
less pronounced for the Fermi GPU.

We compile the code for the M1060 / GT200 GPUs with the
additional compiler flag maxr r egcount =20 which limits the
used number of registers per GPU kernel to 20. Further exper-
iments showed that this leads to the best performance fer thi
architecture for our specific code. We obtain the following r
sult (cf. Figure 3): By investing the same amount of money,
we get more than twice the performance on the older GPU in
contrast to one CPU. These results completely meet our expec
tations. Note again that we compare here one GT200 GPU with
six CPU cores.

Now, we focus on the new Fermi-type of GPU. It comes with
configurable L1 and L2 caches and shared memory. Thus, there
are several parameters which influence the performancerbeha
ior of the resulting code. We undertake an in-depth perfoicea
optimization study for the Poisson solver to find the besapar
eter configuration for the full code. This is reasonable beea
this part of the code requires 80 percent of the overall com-
putation costs and also has global reduction operationshwhi
are optimized for shared memory. The comparison base for
the Fermi GPU optimization is a binary, which is compiled for
compute architecturd..3 (i.e. for GT200 GPUs) but without
limits to the register count. We then compile the code includ
ing Fermi-specific features (i.e. for compute architectu®,
sm 20). There, we can choose between a large shared memory
of 48 KB and 16 KB of L1 cache or a large L1 cache of 48 KB
and a small shared memory of 16 KB per symmetric multipro-
cessor. Furthermore, we try to improve the performance &y di
abling L1 caches for global memory accesses by the compiler
flag - Xpt xas -dl cmecg. Finally, we also experiment with a
limit of 20 registers per kernel just for the Poisson solver.

The overall results of our study are given in Figure 4. The
presented speed-ups are relative to the start configunaitbn
compute architecture 1.3 and are based on accumulated run
times for the Poisson solver during the first 20 time stepg Th
performance of the solver is almost equal to the start configu
ration if we maximize the available shared memory and limit
the register count. However, without the limitation on teg-

9 T T T T T T T T

—— grid resolution 256 x 256 x 256 (w/o overlap)
8 - | —=— grid resolution 256 x 256 x 256 (w. overlap) *

Il GPU-accelerated code as in [12]
80 | B0 fully GPU-ported version of the solver :

T 6.59
61.1

41.85

40 -

20

Computation time (in minutes) for the first 20 time steps
Strong scaling speed-up relative to one GT200 GPU
W
T

Grid resolution 2563 1 2 3 4 5 6 7 8 9

) .) Number of GPUs
Figure 5: By fully porting the fluid solver to the GPU we get mdhan a 30

percent improvement in runtime. Figure 6: Strong scaling (i.e. speed-up) results on the Gied GPU clus-
ter with and without overlapping of computation and commuricat

ister count, we get an increase of more than 20 percent in PeET200 GPU for our double-precision code. We can see this
formance for exactly the same code on the same GPU. This | £iq re 3 if we extrapolate the GF100 GPU speed-up over
QUe to the fact that Fermi GPU; now automatically spill red-12 CPU cores to a speed-up over 6 cores and compare these
isters to the fast L1 cache, while GT200 GPUs use the sloj,mpers with the GT200 GPU performance results. The bet-
DRAM, cf. [25]. On the other hand, applying bigger L1 CaCheSter Fermi performance is in our case the combined result of

to our solver kernels gives better results for all configore. the improved double-precision performance, a higher mgmor
The best results can be seen, if we disable the L1 caches fB'émdwidth and caching effects

global memory accesses, limit the register count and apgty b

ger L1 caches. This effectively means that (instead ofisgill 4 5. performance improvements over the accelerated code

the registers automatically to the L1 cache) we manuallyanov |, 4qgition to the previous single-GPU benchmarks, we are
a lot of registers to théocal memoryand maximize the L1 54 interested in the actual performance gain we achieve by
cache size for local memory accesses since we do not use Jbtqrming a full GPU port of our fluid solver. The first pub-

for the global memory. In fact, most of the registers are thefication by the authors to integrate GPUs in NaSt3DGPF [12]
handled by the cache. Exactly this parameter configurasion ignqwed a pure acceleration approach. In that case, only the

taken for the Poisson solver in all the remaining Fermi speedqessyre Poisson solver and the reinitialization of thellset
up comparisons. To be concise, we do not describe further pef,ction were ported to the GPU. All other computations were
formed benchmarks for other fluid solver parts which show thay;ne on the CPU which required a high data exchange load
e.g. avoiding the register count limitation leads to thetbeg between CPU and GPU memory. Now, as stated in Section
formance for these other kemels. In general, we use diftere 3 1 e finally avoid a large number of data exchanges sifice al
configurations for different portions of the code to get tiestb computations are ported to the GPU. It is however not a priori
results. clear that this full GPU port really gives us a high performan
We now have a look at the performance per Dollar analysismprovement, since the Poisson solver already takes alfout 8
for the Fermi GPU. The results are given in Figure 3. Herepercent of the overall CPU computation time. We therefore pe
we should note that we compare this GPU WithCPU cores. form a benchmark which compares the run times of the GPU
We see an impressive speed-up factor of three for the GPiode used in [12] with our current implementation.
computations with ECC protection and of about 3.4 for non- Figure 5 displays the results of this comparison. We can see
ECC calculations. These results even exceed our expewatioa clear improvement in run time for the full GPU port. In fact,
if we compare the pure memory bandwidth of the GPU and thgye get more than a 30 percent performance gain. In our opin-
CPUs. Obviously, these good results are due to the caches @fn, such an impact in run time clearly shows the necessity of
the Fermi chip which lead to a performance plus of more thamorting full scientific compute codes to GPUs instead ofingly

20 percent over the standard memory bandwidth. Remembey, just the pure acceleration approach presented in thierearl
here that a speed-up of 3.4 in this comparison corresponds #ays of GPU computing.

more than a 40 fold speed-up if we compare the GF100 GPU to
just one CPU core. 4.6. Multi-GPU performance

Another observation is that the new Fermi architecture al- The following multi-GPU performance study shows results
most gives us a threefold speed-up in contrast to the oldesf our local eight-GPU cluster with GT200 GPUs and results

7

Weak scaling efficiency (in %)

Weak scaling efficiency (in %)

relative to one GPU

relative to one GPU

60 -

40

60 -

_ 90.58]
EE——]

78.07

—— grid resolution per GPU 2567 x 128 (w/o overlap) | |
—8— grid resolution per GPU 2562 x 128 (w. overlap)

1 2 3 4 5 6 7 8
Number of GT200 GPUs

—— grid resolution per GPU 256° (w/o overlap)
—8— grid resolution per GPU 2563 (w. overlap)

50

40

30

20

Strong scaling speed-up relative to one Fermi GPU

—— grid resolution 256 x 256 x 256

Number of Fermi GPUs

40 50

Figure 8: Strong scaling (i.e. speed-up) results on the Fbaséd GPU cluster

40 ‘ : ‘ ‘ : : : : with overlapping of computation and communication.

1 2 3 4 5 6 7 8
Number of GT200 GPUs

Figure 7: Weak scaling (i.e. scale-up) efficiency resultsten GT200-based
GPU cluster with and without overlapping strategy for twietent per-GPU
problem sizes.

a small increase in execution time when data is transfewed o
the network for the first time (i.e. for the two-GPU case) whil
the treatment of the smaller problem even gets faster ircse
due to a favorable array alignment on two GPUs. Noting that
the larger problem size even hits the available memory simit

of the larger GPU-cluster with Fermi GPUs. We start with the f the host svstems in the 8 GPU case. we onlv see a verv low
smaller system. There, we always keep the number of GPUY y ' y Y

used per workstation equal. Thus, when computing on e.g Rerformance loss on the full eight GPU system for both prob-
. , 9 |

GPUs we use two GPUSs of the first and two of the second work €™ SiZes: Overall we loose less then 12 percent from the per-

station. Note that the PCI Express bus bandwidth of the workteCt weak scaling of 100 percent if we overlap computatia an

. - . communication. This is a nearly optimal result for a mulfG
stations limits our overall results. Here, we use mainbsard

. . scale-up.
with one chipset and up to 48 PCI Express 2.0 lanes. .
P b b Next, we focus on the results measured on the larger Fermi-

Figure 6 shows _the stron_g scaling / spegd-up resuits for_ Yased 48-GPU cluster of the RWTH Aachen University. Fig-
mUIt"GPl.J testde|th and V\."th(.)m th? techmque of overlaqu: ure 8 shows strong scaling results for a problem size of=256
computation and communication, cf. Section 3.4. It getarcle 556, 556 grid points. The scaling is similar to the GT200 clus-
thqt our good scaling IS supportgd by this overlappmgesgﬁt ter for up to eight GPUs. For the largest GPU count of 48 GPUs,
which we currer?tly usein Fhe PQISson solver. By applyinyé, we still observe a further scaling with more than 40 percant p
see an almost linear scaling with a profound 6.6 fold speed-u ;o speed-up efficiency. This is a quite good result, rptiat

forla sit:nu[{aiign with atZE:c%gri(;l size on eighir?PUs. _We l00se 5pys are less efficient for smaller problem sizes (cf. Figlre
on’y abou percent of performance on the Maximum NUm- g scaling results are presented in Figure 9. We see an

ber of GPUs by overlapping computation and communication,, . perfect weak scaling going up to 48 GPUs. There is

which !S a quite good result.] o less than a 9 percent loss in parallel performance for all GPU

In Figure 7, we present weak scaling efficiency results forcounts. Furthermore, these numbers are better than thiésresu
our multi-GPU solver again with and without the overlapping oy our small GT200 cluster, since the Fermi-based cluster ha
strategy. We use a problem size which is fixed per GPU and in favorable PCI Express and InfiniBand bandwidth per GPU.

crease the number of GPUs. This is done for a problem size_ Ofhe slightly fluctuating results can be explained by a vagyin

avery huge 512grid on just eight GPUs. The weak scaling ef- 5 aimost optimal result for a multi-GPU scale-up on a larger
ficiency values are the absolute run time on one GPU divided b¥nq faster GPU system.

the absolute run times on several GPUs multiplied by 100 per-

cent. For both problem sizes, we see an almost excellent we%(7 Energy consumption
scaling behavior which is also based on the described qverla
ping strategy. The smaller GPU work load for the per-GPU We finally discuss the performance per Watt results for our
problem size of 256& 256 x 128 leads to a larger performance code on the different in-house hardware platforms. To do
difference between non-overlapping and overlapping cdaipu that, we run the bubble simulation for a grid resolution of
tions. In the overlapping case, the bigger problem showg onl256 x 256 x 128 on the full twelve-core CPU system, the full

8

|
jos]
o 11 dual 6-core Xeon CPU
@) 100 Flae < 7
20| 15 9796 9531 031l §GT200 GPUS
S . 1.73 91.23 I8 GF100 GPU with ECC
£ 93.24 11 GF100 GPU w/o ECC
2 0.25 R
g 80 : S
® _% 0.21
: £ 02
2 g
g 60 B I
£ g
= é 0.15
S 40 5
2 40 a)
z
E S 0.1
(=]
T 20 7
% 0.05
§ ‘ —<— grid resolution per GPU 256 x 256 x 256
0 | | | | | |
0 10 20 30 40 50 0

Grid resolution 2567 x 128

Number of Fermi GPUs

. . . .] . y Figure 10: The measured power consumption figures show th&etimei GPU
(FBISLJ?:IL?ét(\a/:lizli(n;iﬁgnc?vg}gpsr;?r?éesgrzezfgmency resultstiun Fermi-based with ECC is about a factor of 2.3 more power-efficient compacedtandard
' CPUs.

eight-GPU cluster and on the Fermi GPU with and withouton two GPU clusters, which showed a profound strong and an
ECC. During the simulation, we attach a power measuring toogven better weak scaling. Overall, these results emphtisze

to each of the machines and note the power consumption agyr two-phase Navier-Stokes solver is capable to get good pe
ter each of the systems performed the calculation of the firormance on parallel multi-GPU clusters.

20 time steps including data field initialization. The reisig
numbers are presented in Figure 10. The maximum power comxcknowledgements

sumption is required with the CPU system. In contrast, the re s work was supported in parts by the Sonderforschungs-
sults for the GPU cluster are already significantly bettete T pareich 611Singular phenomena and scaling in mathematical
numbers for the Fermi card is quite impressive. Itis by adfact ,,4elsfunded by theDeutsche Forschungsgemeinschaite

of 2.3 more power efficient for calculations with ECC and evenyqq Jike to thank th&essourcenverbund NRsid theRWTH

a bit more efficient for non-ECC calculations. These refalés aachen Universitjor giving us access to the GPU cluster of the
a clear indicator for the superiority of GPU computationBisT ~anter for Computing and CommunicatioRurthermore, we

may be important for large computing centers which are l0okycxnowledgdNvidia Corporationfor the provided Fermi card.
ing for energy efficient systems.

))) References
5. Discussion and Conclusions

[1] C. Feichtinger, J. Habich, H. Kostler, G. Hager, U. Ri@e Wellein, A
We presented our results on a fully multi-GPU-based paral- flexible patch-based lattice Boltzmann parallelizationrapph for het-

lel double-precision fluid solver for the two-phase incoegs- ,irr?)%fr('zegfls)GPU'CPU clusters, Parallel Computing, In Pezssected
ible Navier-Stokes equations which uses the level-set@eth 2] x. wang, T. Aoki, Multi-GPU performance of incompressililew com-

Other GPU-oriented publications for two-phase incompbéss putation by lattice Boltzmann method on GPU cluster, Par@l@hput-
flows [10, 11] are not able to achieve our performance results . Kg'cm Press, %O”f_cﬁed Prg"ft(?Oll)f-FEFLo © MUt.GPU d

. . . orrigan, . Lonner, orting o 0 mult- a6s,
because they Only suppemhgle-GPUcomputatlons and pqrtly Proceedings of the 49th AIAA Aerospace Sciences Meetindar@do,
do not fully run on the GPU. In contrast, we were able to discus Florida, USA (2011) .

the first published results forfally multi-GPU-basedsolver of [4] T.Brandvik, G. Pullan, An accelerated 3d Navier—Stokelver for flows

this kind, at least to our knowledge. Furthermore, our sdlve in turbomachines, Journal of Turbomachinery 133 (2) (2011) .

. . . L= . [5] T. Shimokawabe, T. Aoki, C. Muroi, J. Ishida, K. Kawano, Hndo,
deS|gned for eng'nee”ng apphcauon; and can now be &bplle A. Nukada, N. Maruyama, S. Matsuoka, An 80-fold speedup, f®ps
for our various projects and cooperations. For example,ame ¢ full GPU acceleration of non-hydrostatic weather model A% fLoduc-
easily simulate the crown formation of a liquid after a dedpl tion code, Proceedings of the 2010 ACM/IEEE Internationahf@rence
impact, cf. Figure 11. Note that we can also use our solver for ~ for High Performance Computing, Networking, Storage and ysia)

. |t ith arbi il | . Washington, DC, USA (2010) 1-11.
simulations with arbitrarily complex geometries. 6] J. Cohen, M. Molemaker, A Fast Double Precision CFD Codegis

:) i o
In this paper, we could give very promising benchmarking CUDA, in: Proceedings of Parallel CFD 2009, Moffett Fieldlifornia,
results which included a fully realistic three fold speguin USA, 2009. _
comparison to equally priced CPU hardware and a more tharf”) P: A- Jacobsen, J. C. Thibault, I. Senocak, An MPI-CUDA lempen-
g L. tation for massively parallel incompressible flow computation multi-
doubled power efficiency for a real world application. More-

-) MR GPU clusters, Proceedings of the 48th AIAA Aerospace Seehdeet-
over, we did a standard multi-GPU parallelization benctmar ing and Exhibit, Orlando, Florida, USA (2010) .

9

Figure 11: The simulation of the crown formation after a droptgpact in a liquid is a real-world application which was corgglwith our multi-GPU code.

(8]

Bl

(10]

(11]

(12]

(13]

[14]

(15]

(16]

[17]

D. A. Jacobsen, I. Senocak, A full-depth amalgamated [eradl geo-
metric multigrid solver for GPU clusters, Proceedings of tAth4AIAA
Aerospace Sciences Meeting, Orlando, Florida, USA (2011) .

D. Goddeke, S. H. Buijssen, H. Wobker, S. Turek, GPU areion of an
unmodified parallel finite element Navier-Stokes solver, inVWSmari,
J. P. McIntire (Eds.), High Performance Computing & Simula2®99,
2009, pp. 12-21.

J. Kelly, GPU-accelerated simulation of two-phase mpoessible fluid
flow using a level-set method for interface capturing, ASMEfécence
Proceedings 2009 (43826) (2009) 2221-2228.

S.-H. Kuo, P.-H. Chiu, R.-K. Lin, Y.-T. Lin, GPU implemeatton for
solving incompressible two-phase flows, World Academy of iS¢ En-
gineering and Technology (2011) 878-886.

M. Griebel, P. Zaspel, A multi-GPU accelerated solver tioe three-
dimensional two-phase incompressible Navier-Stokes empstiCom-
puter Science - Research and Development 25 (1-2) (20108657
T. Dornseifer, M. Griebel, T. Neunhoeffer, Numericaiilation in Fluid
Dynamics, a Practical Introduction, SIAM, Philadelphia9&9

J. Strybny, C. Thorenz, R. Croce, M. Engel, A parallelf8ze surface
Navier-Stokes solver for high performance computing at threnga wa-
terways administration, in: The 7th Int. Conf. on Hydrosceand Engi-
neering (ICHE-2006), Philadelphia, USA, 2006.

B. Verleye, R. Croce, M. Griebel, M. Klitz, S. Lomov, G. en, H. Sol,
I. Verpoest, D. Roose, Permeability of textile reinforcemsersimula-
tion, influence of shear, validation, Composites ScienceTautinology
68 (13) (2008) 2804—-2810.

R. Croce, M. Griebel, M. A. Schweitzer, Numerical simigatof bubble
and droplet-deformation by a level set approach with surfansion in
three dimensions, International Journal for Numerical Méthio Fluids
62 (9) (2009) 963-993.

S. Osher, J. A. Sethian, Fronts propagating with cumeatdependent
speed: Algorithms based on Hamilton-Jacobi formulationsyniwf
Computational Physics 79 (1988) 12—49.

10

(18]

(19]

(20]

[21]

[22]

(23]

(24]

(25]

M. Sussman, P. Smereka, S. Osher, A level set approaclofoputing
solutions to incompressible two-phase flow, J. Comput. PHy$(1994)
146-159.

J. U. Brackbill, D. B. Kothe, C. Zemach, A continuum metiod mod-
eling surface tension, J. Comput. Phys. 100 (2) (1992) 33635

A. J. Chorin, Numerical solution of the Navier-Stokesiations, Mathe-
matics of Computation 22 (104) (1968) 745-762.

P. Micikevicius, 3D Finite Difference Computation on G# using
CUDA, in: GPGPU-2: Proceedings of 2nd Workshop on General Pu
pose Processing on Graphics Processing Units, ACM, New, Yalk
USA, 2009, pp. 79-84.

M. Griebel, P. Zaspel, Photorealistic visualizatiord&luid animation -
coupling of Maya with a two-phase Navier-Stokes fluid sqiawmput-
ing and Visualization in Science, submitted 2011.

J. K. Walters, J. F. Davidson, The initial motion of a gasble formed in
an inviscid liquid - Part 2. The three-dimensional bubble #hedtoroidal
bubble, J. Fluid. Mech. 17 (1963) 312-336.

Web page of the Top500 list of
http: //ww. t op500. or g (last access: 08/09/2011).
NVIDIA Corporation, NVIDIA’s next generation CUDA comyte archi-
tecture: Fermi, Whitepaper (2009).

supercomputers,

