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Abstract

We present a fully multi-GPU-based double-precision solver for the three-dimensional two-phase incompressible Navier-Stokes
equations. It is able to simulate the interaction of two fluids like air and water based on a level-set approach. High-order finite
difference schemes and Chorin’s projection approach for space and time discretization are applied. An in-depth performance
analysis shows a realistic speed-up of the order of three by comparing equally priced GPUs and CPUs and more than a doubling in
energy efficiency for GPUs. We observe profound strong and weak scaling on two different multi-GPU clusters.
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1. Introduction

Moving forward to Exascale computing, the high perfor-
mance computing (HPC) community has recognized the appli-
cation of massively parallel hardware as one of the key ingre-
dients to satisfy future computing requirements. One type of
this hardware are graphics processing units (GPUs). They are
a prototype for a general class of many-core processors with
a high thread-parallelism which is expected to dominate future
compute clusters. Consequently, there is now a growing num-
ber of multi-GPU-based HPC systems for which scientists need
appropriate numerical software.

An important area for multi-GPU applications are compu-
tational fluid dynamics (CFD) simulations. Commercial CFD
package vendors only slowly start to adapt this technology.But
in academia, several groups have already published resultson
multi-GPU codes in CFD, e.g. for Lattice-Boltzmann appli-
cations [1, 2], compressible fluids [3, 4] or meteorology [5].
For grid-based incompressible flow simulations, which are de-
scribed by the Navier-Stokes equations, Cohen and Molemaker
were in [6] among the first to show multi-GPU results. They im-
plemented a finite difference/volume code for single machine
multi-GPU parallelism. The first truly distributed-memory
MPI-based Navier-Stokes solver with finite differences was
done by Jacobsen et al. [7]. Later, this group also showed ex-
tensions to this solver including a full geometric multigrid [8].
Other multi-GPU implementations of the Navier-Stokes equa-
tions are based on finite elements [9, 3].

In our current research, we are especially focused ontwo-
phaseflow applications based on the Navier-Stokes equations.
Kelly presented in [10] a single-GPU accelerated two-phase
solver using the level-set method. Kuo et al. [11] accelerated
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their shared-memory parallel two-phase flow solver by a single-
GPU-based Poisson solver. We are also aware of unpublished
work on a multi-GPU two-phase flow solver by the group of
Aoki et al. at the Tokyo Institute of Technology. However, tothe
best of our knowledge, there is no publication on a grid-based
double-precision fully GPU-based parallel solver for the two-
phase incompressible Navier-Stokes equations, which is able to
scale on distributed memory multi-GPU clusters.

In this paper, we now present such a two-phase flow solver.
It extends the introducing work by the authors in [12]. Like our
original in-house CPU fluid solver NaSt3DGPF [13, 14, 15, 16],
the new GPU solver uses a finite difference discretization ona
staggered grid in complex geometries and the continuum sur-
face force approach to simulate two fluid phases like air and wa-
ter. The fluid phases are distinguished by a level-set function.
A range of applications e.g. in the domain of droplet / bubble
dynamics [16] or water ways simulations [14] is thus able to
profit from the performance available on large GPU clusters.

Note here that this publication contains several significant
improvements and extensions in contrast to the authors’ first
publication on this topic [12]. The most important improve-
ment is based on the seamless and full usage of GPUs for all
computations. Now, besides just the Poisson solver and the
level-set reinitialization, also all other GPU parallelizable parts
of the described numerical method are completely implemented
on GPUs. This eliminates the large overhead of hundreds of
GPU↔CPU data transfers as further explained in Section 3.1.
Altogether, this leads to a major performance improvement of
more than 30 percent compared to the authors paper [12] which
is more precisely described in the dedicated Section 4.5. We
additionally integrate a methodology based on performanceper
Watt and performance per Dollar benchmarks, which allows to
have more fair performance comparisons, see Section 4.1, 4.4
and 4.7 also with specific focus on Fermi GPU code optimiza-
tions. Finally, we show multi-GPU scaling on a 48 Fermi GPU
cluster in Section 4.6.

Preprint submitted to Computers & Fluids January 23, 2012



The remainder of this article is organized as follows: InSec-
tion 2, we introduce the governing equations and the numeri-
cal methods applied in our solver.Section 3 presents details
of the GPU implementation. Then, inSection 4, we review
GPU benchmarking in general and give an in-depth perfor-
mance analysis of the multi-GPU code. InSection 5, we dis-
cuss our results and provide final conclusions.

The major contributions of this work are as follows:

• For the first time, results of a fully GPU-based double-
precision solver for the two-phase incompressible Navier-
Stokes equations discretized on a grid using the level-set
method are published.

• The solver is an MPI parallel multi-GPU code which
scales on multi-GPU clusters. It thus fulfills the require-
ments for modern HPC systems.

• We present general guidelines for efficient and future-
safe GPU implementations and give best practice rules for
multi-GPU benchmarking.

2. Governing equations and numerical solution

We describe three-dimensional incompressible two-phase
flow problems using the Navier-Stokes equations which are
extended by a level-set formulation [17] to cope with phase-
dependent densities and viscosities [18]. Surface tensioneffects
at the free surface between the fluid phases are modeled by the
continuum surface force method [19]. This approach has been
previously described in detail in [16] for our CPU-based fluid
solver NaSt3DGPF. We here just give a short sketch of the idea.

The model for two-phase incompressible fluids can be de-
scribed in a set of equations with

ρ(φ)
D~u
Dt

+∇p= ∇ · (µ(φ)S)−σκ(φ)δ(φ)∇φ+ρ(φ)~g, (1)

∇ ·~u= 0, (2)

∂tφ+~u·∇φ = 0, (3)

where equation (1) is the momentum equation with timet, the
fluid velocity~u, pressurep and the level-set functionφ. The
level-set function, a signed distance function with|∇φ|= 1, im-
plicitly describes the free surfaceΓ f = {~x∈ Ω | φ(~x) = 0} and
allows to define phase dependent densitiesρ(φ) and viscosities
µ(φ) by

ρ(φ) := ρ2+(ρ1−ρ2)H(φ),
µ(φ) := µ2+(µ1−µ2)H(φ),

with H(φ) :=







0 if φ < 0,
1
2 if φ = 0,
1 if φ > 0,

and φ(~x, t) :=







< 0 if ~x∈ Ω1,

= 0 if ~x∈ Γ f ,

> 0 if ~x∈ Ω2.

Here,Ω1 andΩ2 are the domains of the two fluid phases and
ρ1, ρ2, µ1 andµ2 denote the respective material parameters. The

material derivativeD~u
Dt is given by D~u

Dt := ∂t~u+(~u ·∇)~u. In the
surface tension force termσκ(φ)δ(φ)∇φ of equation (1),κ iden-
tifies the curvature of the free surface andσ denotes the surface
tension coefficient which is a material constant. Furthermore,δ
is the Dirac-delta functional. Finally,~g stands for volume forces
e.g. gravity andS is the stress tensorS := ∇~u+{∇~u}T . Equa-
tion (2) is the continuity equation and describes the incompress-
ibility constraint. The last equation (3) models the transport of
the level-set function i.e. the dynamics of the free surface.

We discretize the above equations with the finite difference
method on a staggered uniform grid. For numerical reasons, we
apply a smoothing [18] to the Heaviside functionalH(φ) and
the Dirac-delta functional in anε-environment of the free sur-
face. Chorin’s projection approach [20] then leads to a solution
method which is described in detail in Algorithm 1. Here, we
employed a first-order Euler time integration to get a simplefor-
mulation. In practical application problems, we use a second-
order Adams-Bashforth time integration to compute the inter-
mediate velocity field and to transport the level-set function.
The time derivative for the artificial timeτ in the level-set reini-
tialization process is discretized by a third-order Runge-Kutta
method. Note that we have to reinitialize the level-set func-
tion after each transport step to recover the distance property
|∇φ|= 1 which is necessary for a correct evaluation of the free
surface’s normal and curvatureκ. All transport terms and the
level-set gradient in the reinitialization step are discretized us-
ing a fifth-order weighted essentially non-oscillatory (WENO)
scheme, while the diffusion term in the second step is computed
using second-order central differences. The Poisson equation is
discretized by a second order method and solved with a Jacobi-
preconditioned conjugate gradient (CG) method for sparse lin-
ear systems. Here, the Poisson equation’s non-constant coeffi-
cients, namely the density jump for two-phase flows, lead to a
high condition number for the linear system and thus to a slow
convergence of the iterative solver. It is therefore a well-known
fact that the Poisson solver dominates the overall run-timefor
such a solution method.

The full GPU solver supports different kinds of boundary
conditions. These include slip and no-slip solid boundaries. In-
flows and outflows can be controlled by Dirichlet and homoge-
neous Neumann boundary conditions for the velocity field. We
introduce complex geometries by flagging out some cells of the
simulation domain and apply appropriate boundary conditions
at the fluid-solid interface cells of the obstacles.

3. Implementation

The GPU implementation is based on the well-known paral-
lel programming extension CUDA from Nvidia. We basically
map one GPU thread to one grid point and linearize the three-
dimensional grid. All operations are done per-cell with a SIMD
(single instruction multiple data) approach.

3.1. Porting process

We started our GPU implementation based on the existing
MPI-parallel CPU code NaSt3DGPF. Since our approach in
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Algorithm 1 (Chorin’s projection approach)

for n= 1,2, . . . do:

1. set boundary conditions for~un

2. compute intermediate velocity field~u∗:

~u∗−~un

δt
= −(~un ·∇)~un+

1
ρ(φn)

∇ · (µ(φn)Sn)

−
1

ρ(φn)
σκ(φn)δ(φn)∇φn+~g

3. apply boundary conditions and transport level-set
function:

φ∗ = φn+δt (~un ·∇φn)

4. reinitialize level-set function by solving

∂τd+sign(φ∗)(|∇d|−1) = 0, d0 = φ∗

5. solve the pressure Poisson equation withφn+1 = d:

∇ ·

(

δt
ρ(φn+1)

∇pn+1
)

= ∇ ·~u∗

6. apply velocity correction:

~un+1 =~u∗−
δt

ρ(φn+1)
∇pn+1

[12] to use the GPU as accelerator for the Poisson solver and the
level-set reinitialization showed motivating results, wemoved
forward and ported now the remaining parts of the fluid solver’s
main loop step by step (including appropriate GPU↔CPU data
transfers) to the GPU. The advantage of this approach is evi-
dent. We always had a fully working and previously validated
(cf. e.g. [14]) CPU code to compare with, such that the cor-
rectness of our GPU implementation could be checked during
the porting process by direct comparison of the CPU and the
GPU data fields. In fact, we almost always saw equal results
up to machine accuracy. The only exception to this were global
reduction operations which obviously have slightly different re-
sults based on the different summation orders. Nevertheless, we
still observe equal results up to discretization error and conver-
gence order.

After we finished the stepwise porting of the solver compo-
nents we centralized all data fields and removed unnecessary
data exchanges. Consequently, we now copy all simulation data
to the GPU once at the beginning of the application. There-
after, almost no GPU↔ CPU data transfers are necessary dur-
ing the simulation. This results in an implementation which
largely profits from the existing GPU performance and allows
us to work around the typical PCI Express bus data exchange
issues as much as possible. Exactly this is the major advan-
tage of afull GPU port over just a GPU-accelerated code. In
the final implementation, the only remaining CPU-based parts
are now the configuration file parser, the data field setup, bi-
nary/visualization file input/output and parallel communication.

3.2. Code design

Our GPU implementation follows on some basic principles:
First, we always use double precision calculations. This is
necessary since we often simulate problems at small scales
like millimeters or less which requires high precision. Even
though mixed-precision approaches might give improved per-
formance for some parts of the code, we decide to stick to
double-precision. We believe that GPU hardware will improve
when it comes to double-precision performance in the future
anyway.

Furthermore, we are highly interested in keeping the GPU
implementation as simple as possible. Thus, we try to minimize
memory-hierarchy specific optimizations. We assume that fu-
ture GPU hardware will be more and more automatically cache-
oriented. This view is supported by the latest developmentsin
the market. As a consequence, the only highly memory opti-
mized (thus shared-memory using) parts of the code are global
reduction operations. For these, we use modified versions ofthe
reduction kernels from the CUDA software development kit.

3.3. GPU specific optimizations

Even though we stay with this simplified implementation
approach which largely avoids shared memory, there are still
some optimizations that should be done for high performance
on GPUs. For example, we see the behavior of older GPU hard-
ware (i.e. pre-FermiGPUs) to perform less efficient when using
GPU functions i.e.kernelswith a higher amount of calling pa-
rameters and a high number of operations: Older GPUs store all
kernel parameters in the localregistersof each GPU thread. We
even nowadays see a largely growing register use with growing
per-kernel instruction count. This might be caused due to a non-
optimal register use by the compiler. Anyway, since the amount
of registers per thread is somehow limited, we often have to
force the compiler to move data from the very fast registers to
local memoryi.e. the slow general GPU memory, which is of-
ten calledregister spilling. This can cause a huge performance
loss on older GPUs and might still harm the performance on the
newerFermi-type GPUs. To overcome this specific drawback,
we split up big computation kernels to smaller ones as already
discussed in [12] for the example of the WENO computation
kernel.

Thecompute configurationfor kernel execution is the map-
ping of parallel threads to the so-calledsymmetric multiproces-
sors (SM)of the GPU. Choosing an appropriate mapping for our
kind of per-cell parallelism is quite easy. We can often maxi-
mize the performance by setting the number of threads per SM
(i.e. theblock size) to 256 or 512.

As already mentioned, we support several types of boundary
conditions (slip, no-slip, Dirichlet, Neumann, periodic), a va-
riety of finite difference stencils, complex geometries andwe
employ boundary cells (i.e. halo/ghost cells) for the paralleliza-
tion. Therefore, the original CPU code loops over the three-
dimensional data fields with a lot of different data access pat-
terns (see Figure 1). However, mapping these patterns to GPU-
parallelism is not obvious, since the heavy use of conditionals,
which is typically accepted for CPUs, might cause a dramatic
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Figure 1: Complex geometries and boundary cells in the finite difference
scheme lead to irregular data access patterns for data fields.In this 2D ex-
ample which includes a discretized circular solid geometry, computations have
only to be done for the colored cells.

loss in performance on the GPU. To work around this, we pre-
compute appropriate Boolean data field access patterns onceon
the CPU before the main compute loop and move them to the
GPU. Consequently we just have to include one conditional and
one additional global read per thread to handle customized data
accesses. Our measurements show a performance gain of about
25 percent for this approach in the relevant GPU kernels which
results in an improved overall code run time. Obviously, this
leads to a slightly higher memory use on the GPU.

3.4. Moving forward to multi-GPU

In standard MPI-based CPU parallelization implementations
we always have to copy data from the system memory to the
network adapter which then performs the actual data transfers.
For parallel multi-GPU implementations, we additionally have
to transfer the data between the GPUs and the CPUs. Further-
more, there is an uneven balance between the actual floating
point performance of GPUs and the GPU↔CPU data transfer
rates. That is, GPUs can compute much faster than we can
transfer the data to the CPU. This performance bottleneck heav-
ily hampers all multi-GPU parallelizations if there is no special
optimization for a good scaling taken into account.

The authors’ introducing work [12] on accelerating the dis-
cussed fluid solver with multi-GPU support already outlined
the important steps of such an optimization. We here shortly
recall these. One key step is to overlap computation and com-
munication as e.g. proposed in [21]. Modern GPUs are able to
exchange data with CPU memory while performing computa-
tions. They can also compute in a non-blocking way, i.e. CPUs
and GPUs can compute independently. The idea is to per-
form a time-intensive GPU computation while the full data ex-
change between GPU, CPU and the network interconnect is
done. Thus, one is able to hide most of the time needed for the
data exchangebehindthe GPU computation. We can apply this
strategy in our iterative solver for the Poisson equation, where

we overlap the large sparse matrix-vector product with the data
field’s boundary data exchange. The only non-overlapped part
here is the final matrix-vector product application on the bound-
ary cells which is done after the data transfers. Overall, this
method leads to a very nice scaling for the Poisson solver and
the full multi-GPU code, cf. Section 4.6. On pre-Fermi GPU
hardware, we are not able to apply this approach to the remain-
ing parts of our code, since here, the boundary-cell-only ap-
plication for other compute kernels is too costly. However,an
appropriate code optimization for a Fermi-based GPU cluster is
future work.

Another important multi-GPU optimization step is an effi-
cient reordering of scattered boundary data into one continuous
data block in the fast GPU memory before data is copied to the
CPU memory. Of course, we use so-calledpinned memoryfor
all our data exchanges to optimize the bandwidth.

The overallmulti-GPU implementation, as already described
in [12], is realized by mapping the domains of the original do-
main decomposition parallelization of the CPU MPI approach
directly to the GPU. Thus, one CPU core/process handles one
GPU.

4. Performance results

4.1. Best practice in GPU benchmarking

First papers on GPU computing discussed performance by
comparing the run-times on one GPU and one CPU core. This
comparison of course was not fair. Instead, it is more reason-
able to compare one CPUsocketwith one GPU. This means that
one compares a multi-core implementation on e.g. four CPU
cores with the performance of one GPU. But, even this type of
comparison may be questionable if it is not clearly stated which
CPUs and GPUs are compared. From the CPU perspective, one
might benchmark dual-/quad-/hexa- or even octo-core CPUs
which of course are all different in their performance charac-
teristics, but are installed in one socket. Moreover, thereexist
several generations and classes of GPUs, on the market.

We therefore want to advocate the concepts ofperformance
per dollar andperformance per Watt. In the first approach, we
comparesimilar pricedhardware. To this end, it is still unclear
if the price of two full systems or just the hardware price of
GPUs and CPUs should be opposed. On one hand, one always
has to buy a CPU if one wants to use a GPU. On the other hand,
one can buy a quite cheap CPU (up to an order of magnitude
less expensive) and apply it just as a controller for the GPU.
A perfectly fair system-to-system comparison could only be
done using a mixed GPU and multi-core CPU code. To shorten
the discussion, we focus here only on the direct hardware price
comparison of one GPU and appropriate CPUs, since for highly
specialized GPU systems, the controlling CPUs in general cost
less than ten percent of the GPU price. We believe that this per-
formance per dollar analysis allows us to have a quit realistic
look at the real commercial advantage of GPU computations.

The other metric for performance should beperformance per
Watt. That is, we measure and compare the required power con-
sumptions for a given simulation task. We expect this approach
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to become more and more important especially in connection
with the Green ITdiscussion. Beside of the obvious environ-
mental advantages of smaller carbon footprints for large data
centers, power consumption is clearly related to energy costs.
This is why large companies will be more and more interested
to acquire power efficient hardware. Furthermore, ongoing Ex-
ascale projects address power consumption as a key issue for
the next generation of compute clusters since the current pro-
cessor technology will not scale due to power limitations. We
therefore also perform a power consumption analysis for our
benchmarking hardware and the developed multi-GPU code.

4.2. Benchmark setup

For a performance analysis, we use the following GPU and
CPU setup: Our first in-house GPU system is an 8-GPU-cluster
built by two workstations with an Intel Core i7-920 CPU at 2.66
GHz which are each attached to a Nvidia Tesla S1070 GPU sys-
tem containing four GT200 Tesla GPUs (which are effectively
four M1060 GPUs). The compute nodes are connected by a
Mellanox ConnectX QDR 40G InfiniBand interconnect. Since
the described GT200 GPUs have (at the time of writing this pa-
per) each a price which is comparable to an Intel Xeon X5650
six-core CPU with 2.66 GHz, we take a standard 1U compute
node with this CPU for comparisons in our performance per
Dollar analysis. The second in-house GPU system contains a
single Nvidia Tesla C2050 GPU with the newerFermi gener-
ation GF100 GPU core which costs approximately twice the
price of the M1060 GPUs. For the perf/Dollar benchmark, we
therefore compare it with a dual-socket system that hastwo
Intel Xeon X5650 CPUs with in total 12 CPU cores. All in-
house benchmarking systems use Ubuntu Linux 10.04, Open-
MPI, the GCC 4.4 compiler and the Nvidia CUDA Toolkit 3.2.
We compile the GPU code with the optimization flag-O3 and
the CPU code with-O3 -march=native. To perform speed-up
and scale-up tests for a larger GPU count, we also got access
to the GPU cluster of the Center for Computing and Commu-
nication at the RWTH Aachen University, Germany. We use
up to 48 Fermi-type GPUs, Nvidia Quadro 6000. They are
installed in double-GPU systems with two Intel Xeon X5650
CPUs which are connected by QDR InfiniBand. The software
stack is Scientific Linux 6.1, GCC 4.4.5, OpenMPI 1.5.3 and
CUDA 4.0.17.

Our benchmarking problem is (similar to [12]) a rising bub-
ble of air inside a tank of water with surface tension effects(see
Figure 2). The bubble has a diameter of 6 cm and the water tank
has a side length of 20 cm. In our simulations, the bubble be-
comes torus-shaped over time, which complies with experimen-
tal results in [23]. This kind of example is both representative
for some of our applications and computationally challenging.
We always measure wall-clock times including all required tim-
ings for GPU↔CPU data transfers. Computations on the CPU
and on the GPU are performed in double precision. Since our
fluid solver uses adaptive time step sizes, we measure the run-
time required in the main loop to compute a fixed number of
20 time steps instead of a fixed simulated physical time to get
comparable results. A calculation of 20 time steps of our model

Figure 2: Our performance benchmark example is an air bubble rising in water.
The visualization was done following [22].

problem at a grid resolution of 256×256×128 takes about 51
minutes on the full six-core Xeon processor.

4.3. Performance expectations
The original CPU-based fluid solver NaSt3DGPF is a re-

search code which has been developed over more than a decade.
It is presently applied in various cooperations and projects.
Consequently, this code is optimized for performance only to
a point such that it is still readable and expandable. On the
other hand, the new GPU code has been developed over a few
months in net effective development time and is also not over-
optimized in the sense of heavy shared-memory use or micro-
benchmarking. We therefore think that this is a sufficientlyfair
base for a performance comparison.

We now look at the different hardware platforms to judge the
results presented in the next sections. Table 1 gives the theoret-
ical peak performance values in double-precision floating-point
operations and memory bandwidth. Note that we used non-
ECC results for the GPUs. ECC-protected GPU calculations
have a reduced memory bandwidth by at least 8 percent. The
table also specifies the speed-up ratios between the hardware
that we will compare in our test. As a matter of fact, the di-
rect comparison of raw theoretical peak performances is often
misleading, since these numbers do not reflect real application
performance. However, it allows us to get a first feeling for
the achievable speed-ups. One interesting result is the limited
raw double-precision floating-point performance for the GT200
GPUs. However, since the most time consuming part of our
code, i.e. the sparse iterative solver, is typically memory-bound,
the corresponding memory bandwidth differences are expected
to be the dominant performance limiters. Therefore, we should
be satisfied if we see speed-ups in the range of two to three in
our performance per dollar analysis.

4.4. Single-GPU speed-up analysis
Figure 3 shows the single-GPU speed-ups for the older

GT200-based GPU and the new Fermi generation GPU. We get
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CPU/GPU type double-precision floating-point peak performanceratio peak memory bandwidth ratio

Intel Xeon X5650 ∼64 Gflops 32 GB/s
Nvidia M1060 (no ECC) 78 Gflops 1.2x 102 GB/s 3.2x

two Intel Xeon X5650s ∼128 Gflops 64 GB/s
Nvidia C2050 (no ECC) 515 Gflops 4x 148 GB/s 2.3x

Table 1: CPUs and GPUs have different performance characteristics. The ratios reflect the speed-ups between the grouped CPUs and GPUs with respect to double-
precision floating-point performance and memory bandwidth. Gflops numbers for the CPUs are accumulated values for the 6 / 12 physical cores and were extracted
from the Top500 list [24].
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better performance for higher grid resolutions. This is a typical
behavior for GPUs since the cost-intensive global memory data
requests can be better overlapped for computations with higher
work loads per GPU. However, the performance increase has to
stagnate for some problem size, if the maximum floating point
performance or the maximum memory bandwidth limit is hit
and interleaving of memory fetches is no longer possible. This
stagnation can be clearly seen for the slower GT200 GPU but is
less pronounced for the Fermi GPU.

We compile the code for the M1060 / GT200 GPUs with the
additional compiler flag-maxrregcount=20 which limits the
used number of registers per GPU kernel to 20. Further exper-
iments showed that this leads to the best performance for this
architecture for our specific code. We obtain the following re-
sult (cf. Figure 3): By investing the same amount of money,
we get more than twice the performance on the older GPU in
contrast to one CPU. These results completely meet our expec-
tations. Note again that we compare here one GT200 GPU with
six CPU cores.

Now, we focus on the new Fermi-type of GPU. It comes with
configurable L1 and L2 caches and shared memory. Thus, there
are several parameters which influence the performance behav-
ior of the resulting code. We undertake an in-depth performance
optimization study for the Poisson solver to find the best param-
eter configuration for the full code. This is reasonable because
this part of the code requires 80 percent of the overall com-
putation costs and also has global reduction operations which
are optimized for shared memory. The comparison base for
the Fermi GPU optimization is a binary, which is compiled for
compute architecture1.3 (i.e. for GT200 GPUs) but without
limits to the register count. We then compile the code includ-
ing Fermi-specific features (i.e. for compute architecture2.0,
sm_20). There, we can choose between a large shared memory
of 48 KB and 16 KB of L1 cache or a large L1 cache of 48 KB
and a small shared memory of 16 KB per symmetric multipro-
cessor. Furthermore, we try to improve the performance by dis-
abling L1 caches for global memory accesses by the compiler
flag -Xptxas -dlcm=cg. Finally, we also experiment with a
limit of 20 registers per kernel just for the Poisson solver.

The overall results of our study are given in Figure 4. The
presented speed-ups are relative to the start configurationwith
compute architecture 1.3 and are based on accumulated run
times for the Poisson solver during the first 20 time steps. The
performance of the solver is almost equal to the start configu-
ration if we maximize the available shared memory and limit
the register count. However, without the limitation on the reg-
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Figure 5: By fully porting the fluid solver to the GPU we get morethan a 30
percent improvement in runtime.

ister count, we get an increase of more than 20 percent in per-
formance for exactly the same code on the same GPU. This is
due to the fact that Fermi GPUs now automatically spill reg-
isters to the fast L1 cache, while GT200 GPUs use the slow
DRAM, cf. [25]. On the other hand, applying bigger L1 caches
to our solver kernels gives better results for all configurations.
The best results can be seen, if we disable the L1 caches for
global memory accesses, limit the register count and apply big-
ger L1 caches. This effectively means that (instead of spilling
the registers automatically to the L1 cache) we manually move
a lot of registers to thelocal memoryand maximize the L1
cache size for local memory accesses since we do not use it
for the global memory. In fact, most of the registers are then
handled by the cache. Exactly this parameter configuration is
taken for the Poisson solver in all the remaining Fermi speed-
up comparisons. To be concise, we do not describe further per-
formed benchmarks for other fluid solver parts which show that
e.g. avoiding the register count limitation leads to the best per-
formance for these other kernels. In general, we use different
configurations for different portions of the code to get the best
results.

We now have a look at the performance per Dollar analysis
for the Fermi GPU. The results are given in Figure 3. Here,
we should note that we compare this GPU with12 CPU cores.
We see an impressive speed-up factor of three for the GPU
computations with ECC protection and of about 3.4 for non-
ECC calculations. These results even exceed our expectations
if we compare the pure memory bandwidth of the GPU and the
CPUs. Obviously, these good results are due to the caches of
the Fermi chip which lead to a performance plus of more than
20 percent over the standard memory bandwidth. Remember
here that a speed-up of 3.4 in this comparison corresponds to
more than a 40 fold speed-up if we compare the GF100 GPU to
just one CPU core.

Another observation is that the new Fermi architecture al-
most gives us a threefold speed-up in contrast to the older
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Figure 6: Strong scaling (i.e. speed-up) results on the GT200-based GPU clus-
ter with and without overlapping of computation and communication.

GT200 GPU for our double-precision code. We can see this
in Figure 3 if we extrapolate the GF100 GPU speed-up over
12 CPU cores to a speed-up over 6 cores and compare these
numbers with the GT200 GPU performance results. The bet-
ter Fermi performance is in our case the combined result of
the improved double-precision performance, a higher memory
bandwidth and caching effects.

4.5. Performance improvements over the accelerated code
In addition to the previous single-GPU benchmarks, we are

also interested in the actual performance gain we achieve by
performing a full GPU port of our fluid solver. The first pub-
lication by the authors to integrate GPUs in NaSt3DGPF [12]
showed a pure acceleration approach. In that case, only the
pressure Poisson solver and the reinitialization of the level set
function were ported to the GPU. All other computations were
done on the CPU which required a high data exchange load
between CPU and GPU memory. Now, as stated in Section
3.1, we finally avoid a large number of data exchanges since all
computations are ported to the GPU. It is however not a priori
clear that this full GPU port really gives us a high performance
improvement, since the Poisson solver already takes about 80
percent of the overall CPU computation time. We therefore per-
form a benchmark which compares the run times of the GPU
code used in [12] with our current implementation.

Figure 5 displays the results of this comparison. We can see
a clear improvement in run time for the full GPU port. In fact,
we get more than a 30 percent performance gain. In our opin-
ion, such an impact in run time clearly shows the necessity of
porting full scientific compute codes to GPUs instead of relying
on just the pure acceleration approach presented in the earlier
days of GPU computing.

4.6. Multi-GPU performance
The following multi-GPU performance study shows results

of our local eight-GPU cluster with GT200 GPUs and results
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Figure 7: Weak scaling (i.e. scale-up) efficiency results onthe GT200-based
GPU cluster with and without overlapping strategy for two different per-GPU
problem sizes.

of the larger GPU-cluster with Fermi GPUs. We start with the
smaller system. There, we always keep the number of GPUs
used per workstation equal. Thus, when computing on e.g. 4
GPUs we use two GPUs of the first and two of the second work-
station. Note that the PCI Express bus bandwidth of the work-
stations limits our overall results. Here, we use mainboards
with one chipset and up to 48 PCI Express 2.0 lanes.

Figure 6 shows the strong scaling / speed-up results for our
multi-GPU tests with and without the technique of overlapping
computation and communication, cf. Section 3.4. It gets clear
that our good scaling is supported by this overlapping strategy,
which we currently use in the Poisson solver. By applying it,we
see an almost linear scaling with a profound 6.6 fold speed-up
for a simulation with a 2563 grid size on eight GPUs. We loose
only about 18 percent of performance on the maximum num-
ber of GPUs by overlapping computation and communication,
which is a quite good result.

In Figure 7, we present weak scaling efficiency results for
our multi-GPU solver again with and without the overlapping
strategy. We use a problem size which is fixed per GPU and in-
crease the number of GPUs. This is done for a problem size of
256×256×128 and 2563 per GPU. Thus, our largest test case is
a very huge 5123 grid on just eight GPUs. The weak scaling ef-
ficiency values are the absolute run time on one GPU divided by
the absolute run times on several GPUs multiplied by 100 per-
cent. For both problem sizes, we see an almost excellent weak
scaling behavior which is also based on the described overlap-
ping strategy. The smaller GPU work load for the per-GPU
problem size of 256×256×128 leads to a larger performance
difference between non-overlapping and overlapping computa-
tions. In the overlapping case, the bigger problem shows only
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Figure 8: Strong scaling (i.e. speed-up) results on the Fermi-based GPU cluster
with overlapping of computation and communication.

a small increase in execution time when data is transferred over
the network for the first time (i.e. for the two-GPU case) while
the treatment of the smaller problem even gets faster in thiscase
due to a favorable array alignment on two GPUs. Noting that
the larger problem size even hits the available memory limits
of the host systems in the 8 GPU case, we only see a very low
performance loss on the full eight GPU system for both prob-
lem sizes. Overall we loose less then 12 percent from the per-
fect weak scaling of 100 percent if we overlap computation and
communication. This is a nearly optimal result for a multi-GPU
scale-up.

Next, we focus on the results measured on the larger Fermi-
based 48-GPU cluster of the RWTH Aachen University. Fig-
ure 8 shows strong scaling results for a problem size of 256×
256×256 grid points. The scaling is similar to the GT200 clus-
ter for up to eight GPUs. For the largest GPU count of 48 GPUs,
we still observe a further scaling with more than 40 percent par-
allel speed-up efficiency. This is a quite good result, noting that
GPUs are less efficient for smaller problem sizes (cf. Figure3).

Weak scaling results are presented in Figure 9. We see an
almost perfect weak scaling going up to 48 GPUs. There is
less than a 9 percent loss in parallel performance for all GPU
counts. Furthermore, these numbers are better than the results
on our small GT200 cluster, since the Fermi-based cluster has
a favorable PCI Express and InfiniBand bandwidth per GPU.
The slightly fluctuating results can be explained by a varying
cluster work load and different array alignments. Again, this is
an almost optimal result for a multi-GPU scale-up on a larger
and faster GPU system.

4.7. Energy consumption

We finally discuss the performance per Watt results for our
code on the different in-house hardware platforms. To do
that, we run the bubble simulation for a grid resolution of
256×256×128 on the full twelve-core CPU system, the full
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Figure 9: Weak scaling (i.e. scale-up) efficiency results onthe Fermi-based
GPU cluster using the overlapping strategy.

eight-GPU cluster and on the Fermi GPU with and without
ECC. During the simulation, we attach a power measuring tool
to each of the machines and note the power consumption af-
ter each of the systems performed the calculation of the first
20 time steps including data field initialization. The resulting
numbers are presented in Figure 10. The maximum power con-
sumption is required with the CPU system. In contrast, the re-
sults for the GPU cluster are already significantly better. The
numbers for the Fermi card is quite impressive. It is by a factor
of 2.3 more power efficient for calculations with ECC and even
a bit more efficient for non-ECC calculations. These resultsare
a clear indicator for the superiority of GPU computations. This
may be important for large computing centers which are look-
ing for energy efficient systems.

5. Discussion and Conclusions

We presented our results on a fully multi-GPU-based paral-
lel double-precision fluid solver for the two-phase incompress-
ible Navier-Stokes equations which uses the level-set method.
Other GPU-oriented publications for two-phase incompressible
flows [10, 11] are not able to achieve our performance results,
because they only supportsingle-GPUcomputations and partly
do not fully run on the GPU. In contrast, we were able to discuss
the first published results for afully multi-GPU-basedsolver of
this kind, at least to our knowledge. Furthermore, our solver is
designed for engineering applications and can now be applied
for our various projects and cooperations. For example, we can
easily simulate the crown formation of a liquid after a droplet
impact, cf. Figure 11. Note that we can also use our solver for
simulations with arbitrarily complex geometries.

In this paper, we could give very promising benchmarking
results which included a fully realistic three fold speed-up in
comparison to equally priced CPU hardware and a more than
doubled power efficiency for a real world application. More-
over, we did a standard multi-GPU parallelization benchmark
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Figure 10: The measured power consumption figures show that theFermi GPU
with ECC is about a factor of 2.3 more power-efficient compared to standard
CPUs.

on two GPU clusters, which showed a profound strong and an
even better weak scaling. Overall, these results emphasizethat
our two-phase Navier-Stokes solver is capable to get good per-
formance on parallel multi-GPU clusters.
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