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Abstract

In this article, we examine the elastic properties of boron-nitride nanotubes, which
are embedded in amorphous silicon-boron-nitride ceramics. We employ molecular
dynamics simulations using the Parrinello-Rahman approach. To this end, all sys-
tems are modeled with a reactive many-body bond order potential due to Tersoff,
which is able to describe covalent bonding accurately. We apply external stress and
derive stress-strain curves for various tensile and compressive load cases at given
temperature and pressure. In addition to Young moduli and Possion ratios, we com-
pare radial distribution functions, average coordination numbers, ring statistics and
self-diffusion coefficients to characterize the short-range, medium-range and long-
range order of Si3BN5, Si3B2N6 and Si3B3N7 matrices, respectively. Here, our results
show that Si3B3N7 exhibits the highest Young modulus and the largest elastic range.
Then, we study the properties of a ceramics composite material made from Si3B3N7

matrix and BN nanotubes. We calculate stress-strain curves for the composite to
predict the rates of reinforcement of the matrix due to the BN nanotubes. Here, also
the influence of the nanotube/matrix-ratio on the elastic modulus of the composite
is examined. Finally, we compare the Young moduli derived from our numerical sim-
ulations to predictions given by both, a simple macroscopic rule-of-mixtures, which
depends on the volume fraction only, and an extended rule-of-mixtures, which also
takes the geometry of the BN nanotube into account. Our numerical results show
that the extended rule-of-mixtures predicts the Young modulus of the composite
with a relative error of 5 % or less.
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1 Introduction

Nanotubes [1] have attracted a lot of attention in the last decade due to their
unusual structural properties. Besides the now well-known tubes made from
carbon, there exist tubes made from other materials. In particular, boron-
nitride (BN) nanotubes [2,3], and different types of BxCyNz [4,5] nanotubes
were first predicted on the basis of computer simulations. Meanwhile, single
and multi-wall formed BN nanotubes can be produced with diameters com-
parable to that of carbon nanotubes [6–8]. Several types of BxCyNz tubes
have also been synthesized [9] and transformed to pure BN nanotubes [10].
Recently, ab-initio molecular dynamics simulations have been performed to
simulate the microscopic growth mechanism for BN nanotubes [11] and the
phonons of BN nanotubes [12]. Experimental studies [13] and semi-empirical
calculations [5] of their mechanical properties show that BN nanotubes dis-
play a high Young modulus, which is at least comparable to that of carbon
nanotubes. However, the electrical properties of BN nanotubes are very differ-
ent from those of carbon nanotubes. While carbon nanotubes show a metallic,
semiconductor or insulator characteristic depending on chirality and diameter,
theoretical studies suggest that BN nanotubes exhibit an energy gap of about
4–5 eV independent of chirality, diameter or number of walls [3]. Thus, BN
nanotubes possess the property of an insulator for low electric fields. Alto-
gether, BN tubes are one of the strongest insulating nanofibers and may find
important uses in ceramics and composites.

On the other hand, there exits a large variety of ceramics and amorphous ma-
terials. An interesting class is based on polycrystalline or amorphous silicon-
nitride which additionally contains boron or carbon. Some structural charac-
terization of such systems has recently been achieved experimentally, see [14–
16]. Such ceramics have various industrial applications [17,18] because of their
unusual thermal and mechanical properties [19].

Therefore, it can be expected that a Si-B-N matrix with embedded BN nan-
otubes results in a promising new material with interesting properties. To our
knowledge composites of Si-B-N ceramics and BN nanotubes have neither been
theoretically studied nor been synthesized so far. To this end, computational
methods can be used to access and thus to predict, to describe and to ex-
plain the mechanical and the thermal properties of such future materials [20].
Computer simulations allow detailed studies on the influence of different pa-
rameters on associated material properties, like the volume fraction and the
geometric distribution of the nanotubes within the composite. In particular,
first-principle techniques and empirical potential methods have been success-
fully applied to study several small nanoscaled systems. For large systems with
thousands of atoms and more, classical molecular dynamics simulations must
be used due to complexity reasons.
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In this work, we first derive stress-strain curves of amorphous Si3BN5, Si3B2N6

and Si3B3N7 at various temperatures for normal pressure by means of classical
molecular dynamics simulations in the framework of the NPT ensemble [21,22].
To model amorphous Si-B-N, we use the Tersoff bond order potential [23,24],
which is able to describe covalent bonding in an accurate way. We apply an ex-
ternal stress tensor within the equations of motion of the Parrinello-Rahman-
Nosé Lagrangian [21,22,25] to accomplish various tensile and compressive load
cases. Furthermore, we characterize these systems by analyzing their short-
range, medium-range and long-range order. For a better understanding of the
medium-range order properties, we study the shortest-path rings in the amor-
phous matrix. To this end, we have to find all shortest-path rings within an
interconnection network. Here, we improved the algorithm of Franzblau [26]
with respect to the scalability of the storage and the computational effort for
large sparse graphs. Our results show that amorphous Si3B3N7 exhibits the
highest Young modulus and the largest elastic range.

We then study the mechanical properties of Si3B3N7 ceramics with embedded
BN nanotubes. Here we are interested in the reinforcement of the amorphous
matrix. To this end, we derive stress-strain curves for the composites at various
temperatures for different nanotube/matrix ratios. We obtain reinforcement
rates between 1 % and 37 % depending on the composition of the system and
the considered temperature. In our equilibrated composite systems we find
that between 6 % and 13 % of the atoms of the BN nanotubes are bonded to
an atom of the Si3B3N7 matrix.

Finally, we compare the results of our numerical simulations on the mechanical
properties of the composites with two macroscopic rule-of-mixtures, which are
commonly used to predict the Young modulus of composites. Here, the simple
rule-of-mixtures depends on the Young modulus of the nanotube, the Young
modulus of the matrix and the volume fraction of the nanotube. The relative
error of this simple rule can be reduced by using an extended rule-of-mixtures
due to Liu and Chen [27,28], which also takes the geometry of the nanotube,
i.e. length and diameter, into account. This extended rule-of-mixtures then
results in a relative error which is less than 5 %.

The remainder of this paper is organized as follows: In section 2 we discuss
the computational methods which we used in our studies. Here, in section
2.1, the details of the molecular dynamics approach in the framework of the
NPT ensemble are given. In section 2.2 we discuss the potential model which
we employ to represent systems composed of silicon, boron and nitrogen. We
present the computational method used to derive stress-strain curves in section
2.3. The techniques to characterize the short-range, medium-range and long-
range order are given in section 2.4 and 2.5. In section 3 we describe the setup
of our numerical experiments. Their results are discussed in section 4. Finally
we give some concluding remarks in section 5.
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2 Computational methods

2.1 Molecular dynamics simulations

The Hamiltonian for a molecular system with N particles, constant volume
and constant energy is given by

H =
1

2

N
∑

i=1

~pT
~xi

~p~xi

mi

+ V (~x1, . . . , ~xN) (1)

with cartesian coordinates ~xi, moments ~p~xi
, masses mi and a conservative

potential V . This corresponds to the so-called NVE ensemble. To obtain an
isothermal-isobaric ensemble, or NPT ensemble, which allows to control pres-
sure and temperature, we introduce additional degrees of freedom. To this end,
we define a time-dependent matrix ĥ = [~a1,~a2,~a3] which consists of the basis

vectors of the simulation cell and re-scale the coordinates by ~̂si = ĥ−1~xi. Fur-
thermore, we re-scale the time t by t̄ =

∫ t
0 γ(τ)dτ and thus obtain the velocities

in the form ~̇xi(t̄) = γĥ
˙̂
~si(t). This way, there are the nine degrees of freedom of

the cell matrix ĥ to control the pressure and one degree of freedom related to
the scaling of the velocities γ to control the temperature. We define the ficti-
tious potentials Pext det ĥ and NfkBT ln γ with help of the external pressure
Pext and the target temperature T , the system’s number of degrees of freedom
Nf and Boltzmann’s constant kB. Now a so-called Parrinello-Rahman-Nosé
Lagrangian can be postulated and an extended Hamiltonian

H =
1

2

N
∑

i=1

~pT
~si
G~p~si

mi

+
1

2

tr(pT
h ph)

MP

+
1

2

p2
η

MT

+ V (h, h~s1, . . . , h~sN) + Pext det h + NfkBTη

(2)

can be derived with dynamical variables ~si(t) := ~̂si(t̄), h(t) := ĥ(t̄), G := hT h,
and η(t) := ln γ(t̄); for details see [20–22]. Here, MP is a fictitious mass or
inertia parameter to control the time-scale of motion of the cell h, and MT is an
analogous parameter with respect to the temperature. The related equations
of motion read as

~̇si =
~p~si

mi

, ḣ =
ph

MP

, η̇ =
pη

MT

, (3)

~̇p~si
=−h−1∇~xi

V − G−1Ġp~si
−

pη

MT

p~si
, (4)

ṗh = (Πint − diag (Pext)) h−T det h −
pη

MT

ph , (5)

ṗη =
N
∑

i=1

~pT
~si
G~p~si

mi

+
tr(pT

h ph)

MP

− NfkBT , (6)
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with the internal stress tensor

Πint =
1

det h

(

N
∑

i=1

mih~si~s
T
i hT −

d

d h
V

)

hT . (7)

Note that if periodic boundary conditions are used, the potential V depends
explicitly on the matrix h, since atoms in the unit cell interact not only with
other atoms in the same unit cell but also with their translated images. These
interactions must be correctly included in the terms d

d h
V and ∇~xi

V within
equation (4) and (7); for details see also [25].

Note that one third of the trace of the internal stress tensor equals the instan-
taneous internal pressure Pint = 1

3
tr(Πint). Furthermore, the instantaneous

temperature

Tinstan =
2Ekin

NfkB

can be determined from the kinetic energy

Ekin =
1

2

N
∑

i=1

~pT
si
G~p~si

mi

as usual; the thermodynamic temperature is the time-average of Tinstan.

For the numerical solution of the system (3)–(6) of ordinary differential equa-
tions we have to employ a time-integration scheme. We use the “predictor-
corrector” scheme based on Beeman’s approach [29] with the modifications
due to Refson [30]. This way, also the problem of the dependence of the forces
on the velocities in the equations of motion (3)–(6) is circumvented. Further-
more, the expensive evaluation of the coordinate-dependent terms of the force
calculation has to be performed just once. The evaluation of the velocity-
dependent terms, which is relatively cheap, has in practice to be done about
three times per time step.

Note finally that the physical energy Ekin+V contained in the Hamiltonian (2)
of an NPT ensemble is not conserved. This is in contrast to the Hamiltonian
(1) of an NVE ensemble. But the Hamiltonian (2), i.e. the sum of the physical
energy, the fictitious energy of the barostat and the fictitious energy of the
thermostat, remains constant over time.

2.2 Potential for silicon, boron and nitrogen

There are different empirical potential models available for covalent Si-B-N
systems, like the bond order potential of Tersoff [23] or the potential model
of Marian and Gastreich [31,32]. In this work, we follow the approach of
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Matsunaga and Iwamoto [24]. We choose the Tersoff potential and assume
furthermore that the interactions between Si-B, B-B, and N-N are purely re-
pulsive. This representation is free of effective atomic charges and includes
short-ranged two- and three-body atom interactions. Moreover, the model al-
lows the breaking and formation of bonds. The details of this potential and
the parameters which we used to model Si-B-N systems are given in detail
in [23,24]. Note that all interatomic terms are restricted by cut-off parame-
ters. Thus the well-known linked cell technique can be used for an efficient
implementation [33]. A straightforward domain decomposition approach then
allows for a parallel implementation which results in a parallel complexity of
the order O(N/P ) [34,20]. Here, N denotes the number of particles and P
the number of processors. This allows to treat systems with large numbers of
particles in reasonable time.

2.3 Stress-strain relationship

The stress-strain relationship provides the overall mechanical response of a
material which is subjected to mechanical loading. To account for tensile and
compressive load, we use an additional external stress tensor Πext within the
equations of motion (5)

ṗh = (Πint − diag (Pext) + Πext) h−T det h −
pη

MT

ph . (8)

We first equilibrate the system with zero external stress and constrain the
system to obtain a symmetric 1 equilibrated cell matrix hequi. We then increase
or decrease one of the six independent components of the symmetric external
stress tensor over a period of time and measure the induced stress π := −Πint

and the induced strain ε. Note that thus the linear strain tensor ε is equal
to the symmetric part 1

2

(

eT + e
)

of the displacement matrix e = hh−1
equi − 1.

This way, we generate a stress-strain curve for a tensile or compressive load
at given temperature and pressure [25].

To determine elastic constants we assume that Hooke’s law [35], which implies
a linear stress-strain relationship, is fulfilled for small values of strain. Then,
the slope of the stress-strain curve under uniaxial tension is equal to the so-
called Young modulus E. Moreover, the ratio of transverse contraction strain
to longitudinal extension strain in the direction of the stretching force is known
as the Poisson ratio ν. Now, to compute the elastic constants E and ν of
a system, we simulate this system under uniaxial tensile load and obtain a
discrete stress-strain curve and a discrete transverse strain to longitudinal

1 Note that the symmetry constraint reduces the number of degrees of freedom of
h from 9 to 6.
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Fig. 1. (a) A graph with 7 vertices. The shortest-path rings of this graph are
021, 024, 01354, 123, 2354 and 365. (b) Pairs of antipodes of rings with lengths k = 6
and k = 7. The pairs of antipodes are connected with dashed lines.

strain curve. Then, due to the assumption of Hooke’s law, the approximative
values of E and ν can be easily computed by least squares linear regression [36].

2.4 Shortest-path rings

One way to characterize the medium-range order of amorphous structures is to
analyze the rings of the interconnection network. The computation of all rings
up to a given maximal length k is essentially a graph theoretical problem [37].
Here, atoms are regarded as vertices v ∈ V and bonds 2 as edges e ∈ E in
an abstract graph G = (V,E). An approved method to derive meaningful
information is to take only so-called shortest-path rings into account [38,26].
The shortest-path criterion is fulfilled, if a ring contains a shortest path for
each pair of vertices within the ring. This way, only rings which have no
shortcuts are counted; see also Figure 1(a). Franzblau has given an efficient
algorithm to calculate all shortest-path rings up to a maximal length k [26].
We improved his method with respect to the scalability of the storage and
computational cost in the case of networks with a small maximal coordination
number n like amorphous Si-B-N ceramics.

The original algorithm creates the full distance matrix of the given undi-
rected graph G. For this purpose, a minimal spanning tree is generated to
each vertex v ∈ V using breadth-first search. Then, a backtracking algorithm
is performed for each v ∈ V to find all shortest-path rings. Here, paths are
successively excluded for which the following shortest-path ring criterion ap-
plies: A ring R of the length k is a shortest-path ring if the distance criterion
distR(u, v) = distG(u, v) is fulfilled for every pair of antipodes u, v; see also
Figure 1(b). Here distR and distG denote the distance in a ring R and the graph
G, respectively. Note that the distance matrix is used to evaluate the distance
criterion efficiently. Furthermore, to reduce the number of rings, which grows

2 The practical determination of bonds via distances between atoms will be dis-
cussed in section 4.2.
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exponentially with k
2
, an unimodal labeling according the distance to v is used.

If all shortest-path rings involving v are found, the vertex v and its adjacent
edges are deleted from the graph to avoid duplicate counting of shortest-path
rings. Then, a new starting vertex is chosen and the procedure is repeated
until all vertices are excluded from the graph. Due to the creation of the full
distance matrix, the storage and computational cost of this approach grows
quadratically in the number N = |V | of vertices in the graph.

To reduce this complexity we developed a new algorithm in which the full
distance matrix is not set up. Instead we exploit the sparsity of the intercon-
nection networks related to amorphous systems. To this end, we use a labeling
for all vertices and store for each vertex the indices of its neighbors. Then, we
calculate for a starting vertex v the local subgraph which is related to the
vertices with a distance less or equal k

2
only. The components of this sub-

graph are stored in a list ordered by the distance to the starting vertex v. 3

This way, we are able to search efficiently in the interconnection network. Fur-
thermore, for amorphous systems we can assume that the number of vertices,
which are linked by a path of length less than k, grows cubically with k only.
Then, to find all shortest-path rings of length k, our algorithm has a storage
complexity of the order O(Nk3) and a computational complexity of the order

O(Nn
k
2 log k), where n denotes the maximal coordination number. This way,

we avoid the complexity of the order O(N2) of the original algorithm. This is
a significant improvement for large sparse graphs and small values of k which
allows to treat substantially larger amorphous systems.

2.5 Further structural analysis

The short-range order of amorphous structures can be characterized in terms
of the radial distribution or pair correlation functions. First, we define T :=
{Si, B, N} as the set of the atomic types of the observed system. Then the
partial pair correlation function g(α,β)(r) gives the probability to find an atomic
pair of type α ∈ T and β ∈ T with distance r [39]. It can be approximately
evaluated from a histogram of pair distances accumulated over a simulation
run with m time steps as follows: If Nbin

(α,β) ([r, r + ∆r)) denotes the number of
pairs of type (α, β) within the interval [r, r + ∆r), then g(α,β) can be written
as

g(α,β) ([r, r + ∆r)) ∼=
V

NαNβ

Nbin
(α,β) ([r, r + ∆r))

4π
3

(

(r + ∆r)3 − r3
)

1

m
, (9)

where V denotes the volume of the system, Nα denotes the number of atoms
of type α ∈ T , and m denotes the number of considered time steps. The

3 If two vertices have the same distance from v, they are ordered according to their
global label number.
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computation of the histogram can easily be implemented within a linked cell
approach [20]. Furthermore, the histogram can be used to calculate the average
coordination number

n(α,β)(R) =
1

Nα

∫ R

0
Nbin

(α,β) (r′) dr′, (10)

which gives the average number of atomic species β in a sphere of radius R
centered at atoms of type α. Note that in contrast to the partial pair correla-
tion function g(α,β), the average coordination number n(α,β) is not symmetric
in (α, β).

Long-range order properties like diffusion can be characterized by analyzing
the mean square displacements. For a simulation with a time step size ∆t, the
mean square displacement for t = µ∆t of an atom-type α ∈ T with Nα atoms
can be approximately expressed as

msdα(t) ∼=
1

Nαm

∑

i∈Tα

m−1
∑

j=0

‖~xi(tj+µ) − ~xi(tj)‖
2 , tν = ν∆t . (11)

Here, Tα denotes the set of indices i ∈ {1, . . . , N} for which the associated
particle is of type α. Finally, to obtain the self-diffusion coefficient Dα of
species α ∈ T , we have the expression

Dα = lim
t→∞

1

6t
msdα(t)

which is based on the Einstein relation [39]. Thus, for large t, we obtain a
good approximation to the diffusion coefficients.

3 Numerical experiments

We have incorporated the computational methods described in section 2 into
our existing molecular dynamics software package TREMOLO which is a
load-balanced distributed memory parallel code [20]. For further details see
the web page http://www.ins.uni-bonn.de/info/md. All numerical experi-
ments were performed on our PC cluster Parnass2 [40]. This parallel comput-
ing system consists of 128 Intel Pentium II 400 MHz processors connected by
a 1.28 GBit/s switched Myrinet. To integrate the equations of motion (3)–(6),
we used the method discussed in section 2.1 with a time step size of 0.1 fs. The
fictitious mass MT for the thermostat was set to 10.0 uÅ2 and the fictitious
mass MP for the barostat was set to 10.0 u. Furthermore, we applied periodic
boundary conditions.
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(a) (b)

(c)

Fig. 2. Equilibrated systems: (a) A continuous (12,0) BN nanotube (system I). (b)
A capped (12,0) BN nanotube. (c) Three views into a Si3B3N7 matrix composed of
4254 atoms.

3.1 Equilibrated systems

We first equilibrated a (12, 0) BN nanotube using a NPT-ensemble under
normal pressure at a temperature of 300 K over 40 ps. This nanotube consists
of 360 atoms and is approximately 36 Å long; see also Figure 2(a). Here, we
used an unit cell of appropriate size and applied periodic boundary conditions
to simulate an infinitely elongated nanotube. In the following we denote this
system as system I. To permit the unit cell to alter in longitudinal direction
only, we applied appropriate constraints to the associated Hamiltonian (2).

Furthermore, we equilibrated amorphous systems for Si3BN5, Si3B2N6, and
Si3B3N7 with a total number of atoms of 3831, 4070, and 4254, respectively.
To this end, the atoms were randomly placed into a cubic simulation cell and
we performed an NPT-ensemble at 3500 K with a pressure of 40 GPa over
10.0 ps to eliminate the effect of the initial atomic configuration. Then, we
decreased the temperature linearly to 1500 K over 40 ps, kept the temperature
constant for 20 ps, linearly decreased it again to 300 K over 20 ps, and finally
equilibrated at 300 K for 20 ps. Here, we started the equilibration process with
a diagonal cell matrix and allowed axial variation only. We obtained a density
of approximately 2.6 g/cm3 for the different equilibrated matrices. Note that
in the case of the Si3B3N7 matrix our calculated density is just slightly lower
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Table 1
Equilibrated composite systems. Here, Ωf denotes the approximate volume fraction
of the BN nanotube, Nmat denotes the number of atoms of the matrix, htt denotes
the approximate length of the transversal axes of the matrix, hll denotes the ap-
proximate length of the longitudinal axis of the matrix, Ntub denotes the number
of atoms of the BN nanotube and Ltub denotes the approximate length of the BN
nanotube.

System Ωf [%] Nmat htt [Å] hll [Å] Ntub Ltub [Å]

II 7.8 4254 36 36 360 36

III 4.5 8508 36 72 456 41

IV 2.3 17016 36 143 456 41

V 3.3 17016 36 143 648 60

VI 4.5 17016 36 143 888 82

VII 0.8 68064 71 143 648 60

VIII 1.1 68064 71 143 888 82

IX 1.2 136128 71 285 1848 170

than the predicted density of approximately 2.8 g/cm3 given in reference [41].

To obtain an equilibrated system for the continuous BN nanotube embedded
in the Si3B3N7 matrix, we followed the approach of Brown [42]: We created
a cylindrical cavity in the already relaxed Si3B3N7 matrix of appropriate size
by using a soft repulsive potential [43] within a local minimization process.
We then placed the continuous BN nanotube in the cylindrical cavity and
performed an isothermal-isobaric molecular dynamics simulation under normal
pressure at a temperature of 300 K for 40 ps to equilibrate the composite;
see also Figure 3(a). We denote this system as system II. In an analog way,
we generated seven more composites consisting of a Si3B3N7 matrix and a
(12,0) capped BN nanotube. We denote these systems of different size and
nanotube/matrix-ratio as system III–IX ; for more details see Table 1 and
Figure 3. Note that we finally employed a further equilibration process over
40 ps to obtain equilibrated systems under normal pressure at a given target
temperature.

3.2 Tensile and compressive load conditions

We used the equilibrated reference systems to perform tensile and compressive
tests. To this end, we applied an external stress tensor in the framework of the
NPT-ensemble as described in section 2.3. In particular, we employed a stress
rate of 0.01 GPa/ps to increase or decrease external stress for the longitudinal
axial component in our tensile and compressive load experiments, respectively.
The results of these numerical simulations are presented and discussed in the
following section 4.
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(a) (b)

(c)

(d)

(e)

Fig. 3. The unit cells of the equilibrated systems II–VI: (a) System II. (b) System III.
(c) System IV. (d) System V. (e) System VI.

4 Results and discussion

4.1 BN nanotubes

For the infinite BN nanotube (system I) our tensile tests show that the maxi-
mal load, which can be reached before fracture occurs, decreases with increas-
ing temperature; see Figure 4(a) and 4(b). The computed Young moduli are in
the range of 650 GPa to 700 GPa for temperatures between 300 K and 1200 K.
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Fig. 4. (a) Stress-time curve for the continuous BN nanotube (system I) under
tensile load. (b) Strain-time curve for system I under tensile load. (c) Stress-strain
curve for system I under compressive load.

Also, the Young modulus decreases with the increase of the temperature; for
detailed results see Table 3. For the compressive test case, the computed stress-
strain curve is depicted in Figure 4(c). The change in the slope indicates that
buckling occurs at a strain rate of approximately −0.03. Some intermediate
snapshots of the BN nanotube from the simulated tensile and compressive
load cases are given in Figure 5.

4.2 Si-B-N matrices

We now study the structural and mechanical properties of different Si-B-N
matrices. Here, we focus on Si3BN5, Si3B2N7 and Si3B3N7.

First we deal with the short-range order of these materials via partial pair
correlation functions g(α,β). Here, the pairs (Si, Si), (Si, N) and (B, N) are mod-
eled by a repulsive and an attractive interaction term whereas the pairs (Si, B),
(B, B) and (N, N) are modeled by a repulsive interaction term only. Altogether,
our computations clearly show the amorphous structure of these Si-B-N ma-
trices. Detailed results for 300 K are given in Figure 6.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Snapshots of simulations of a continuous BN nanotube (system I ) under
tensile and compressive load conditions: (a) Uniaxial load of 36.8 GPa with a strain
of 0.05. (b) Uniaxial load of 102.5 GPa with a strain of 0.11. (c) Uniaxial load of
289.8 GPa with a strain of 0.21. (d) Uniaxial load of −4.7 GPa with a strain of
−0.01. (e) Uniaxial load of −10.2 GPa with a strain of −0.05. (f) Uniaxial load of
−21.5 GPa with a strain of −0.37.

For a pair (α, β) ∈ B := {(Si, Si), (Si, N), (B, N)}, we denote the first local
minimum in the associated pair correlation function g(α,β) as R(α,β). We then
characterize a pair of atoms (i, j) of type (α, β) ∈ B as bonded, if their dis-
tance rij is less than R(α,β). Note that the distances R(α,β) are approximately
equal to the corresponding cut-off radii of the Tersoff potential model [24].
With the help of R(α,β) and the partial pair correlation functions g(α,β), we
then calculate the average coordination numbers n(α,β) according to equation
(10). The resulting values are depicted for varying temperature in Figure 7.
We observed that the computed average coordination numbers are approxi-
mately constant up to a temperature of 1200 K. With an increasing amount of
boron the average coordination numbers n(Si,Si) and n(N,B) increase whereas the
average coordination numbers n(Si,N) and n(N,Si) decrease. Note that our calcu-
lated average coordination numbers underestimate experimental results given
in reference [15]. For the case of the Si3B3N7 matrix, values of n(B,N) = 2.8–2.9,
n(N,B) = 1.2–1.4, n(Si,N) = 3.4–3.7 and n(N,Si) = 1.4–1.6 have been obtained.
This is possibly due to a slight difference in the set up used in the experiment
and in our simulations.

We now characterize the medium-range order in Si3BN5, Si3B2N6 and Si3B3N7

by analyzing the shortest-path rings of the connection networks. Our computa-
tions show that the fraction of the shortest-path rings with length 5 ≤ k ≤ 10
is for 1500 K smaller than for the lower temperatures, whereas the fraction of
shortest-path rings with length k = 3 is for 1500 K larger than for the lower
temperatures; see Figure 8. This indicates that the amorphous Si-B-N matri-
ces break down to components with only two or three atoms for a temperature
of 1500 K. In addition, we found that the ratio of shortest-path rings with a
length of k ≤ 5 is increasing with the amount of boron, which suggests an
strengthening effect on the amorphous network.

Then, we analyzed atomic transport properties of the equilibrated Si-B-N ma-
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Fig. 6. Partial pair correlation functions for equilibrated Si3BN5, Si3B2N6 and
Si3B3N7 at a temperature of 300 K under normal pressure.

trices, which are of long-range order. Here, the self-diffusion coefficients of the
Si3B3N7 and Si3B2N6 matrices are much smaller than that of the Si3BN5 ma-
trix; see Figure 9. Note that for high temperatures between 1200 K and 1500 K,
the self-diffusion coefficients decrease with the increase of the amount of boron.
This indicates that Si3B3N7 exhibits the best thermal stability, which is in a
good agreement with the results of the molecular dynamics simulations of Mat-
sunaga and Iwamoto; for a further discussion see [24]. Note that our results
for the average coordination numbers, the shortest-path rings and the self-
diffusion coefficients suggest that there is a change of phase between 1200 K
and 1500 K. In experimental studies of amorphous Si3B3N7, a decomposition
temperature of approximately 1950 K has been determined [15]. This differ-
ence is probably due to the Tersoff potential model and slight discrepancies
in the set up of the experiment and our simulations.
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mal pressure.

Finally, we studied the mechanical properties of the Si-B-N matrices. Here, the
computed stress-strain curves for the tensile and compressive load cases show
that the Young modulus and the elastic range increase with increasing amount
of boron; see Figure 10. In particular, in correspondence with the suggested
change of phase between 1200 K and 1500 K, the computed stress-strain curves
indicate that the Young modulus and the elastic range is rapidly decreasing
from temperature 1200 K to temperature 1500 K; see Figure 11. Moreover,
our results of the tensile tests show that the average coordination numbers,
especially n(B,N) and n(N,B), decrease with an increase of the external stress; see
Figure 12. Also, the fraction of the shortest-path rings with length 5 ≤ k ≤ 12
decreases with an increase of the external stress; compare Figure 13. Note that,
in the case of Si3B3N7, our computed Young moduli decrease from 132.1 GPa
at 300 K to 129.5 GPa at 1200 K; see Table 3. This is slightly lower than
the theoretical predictions of the Young modulus of Si3B3N7 (≈ 200 GPa)
given in [41] and the experimental values for related Si-B-(C)-N ceramics (≈
200 –350 GPa) given in [14]. Nevertheless, the experimental studies also showed
a decrease of the Young modulus with an increase of the temperature [14].

Altogether, as already noted, our results suggest that the decomposition tem-
perature increases with the amount of boron. Furthermore, our results on the
mechanical properties of Si3BN5, Si3B2N6 and Si3B3N7, indicate that Si3B3N7

exhibits the highest Young modulus and the largest elastic range. Therefore
we focus in the following on composites of BN nanotubes and amorphous
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Fig. 8. Histograms of the distribution of the length of shortest-path rings of equi-
librated amorphous Si3BN5, Si3B2N6 and Si3B3N7 at various temperatures under
normal pressure.

Si3B3N7. Here, due to the expected change of phase for temperatures above
1200 K, we consider only temperatures between 300 K and 1200 K.
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Fig. 14. Partial view of system VI. Here we only show the atoms of the BN nanotube
and the atoms of the matrix which are bonded to the nanotube.
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of the nanotube which are bonded to a silicon atom of the matrix for systems II–IV.

4.3 BN nanotube / Si3B3N7 composites

First we consider the interaction between a BN nanotube and a Si3B3N7 in a
composite; see also Figure 14. The equilibrated systems II–IX exhibit two types
of interconnection bonds 4 between the nanotube and the matrix. Primarily,
there are bonds between boron atoms of the nanotube and nitrogen atoms
of the matrix. Here, the amount of boron atoms of the nanotube, which are
bonded to a nitrogen atom of the matrix, is 15–25 % of the overall amount of
boron atoms of the nanotube; see Figure 15(a) and Table 2(a). Then, there are
bonds between nitrogen atoms of the nanotube and silicon atoms of the matrix.
Here, the amount of bonded nitrogen atoms of the nanotube is less than 4 %;
see Figure 15(b) and Table 2(b). Note that van der Waals interactions are

4 As already noted we characterize a pair of atoms (i, j) of type (α, β) ∈
{(Si, Si), (Si, N), (B, N)} as bonded if their distance rij is less than R(α,β).
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Table 2
(a) Percentage of the boron atoms of the nanotube which are bonded to a nitrogen
atom of the matrix for systems V–IX at a temperature of 300 K. (b) Percentage
of the nitrogen atoms of the nanotube which are bonded to a silicon atom of the
matrix for systems V–IX at a temperature of 300 K.

System V System VI System VII System VIII System IX

(a) 20.3 % 21.2 % 14.4 % 15.1 % 13.6 %

(b) 2.5 % 1.6 % 1.0 % 3.1 % 2.4 %

Table 3
Young moduli E and Poisson ratios ν of BN nanotube Si3B3N7 composites at various
temperatures under normal pressure. Additionally, the Young moduli and Poisson
ratios of the Si3B3N7 matrix are given.

Si3B3N7 System I System II System III System IV

T [K] E [GPa] ν E [GPa] E [GPa] ν E [GPa] ν E [GPa] ν

300 132.2 0.27 696.1 181.5 0.24 150.2 0.25 139.1 0.27

600 131.7 0.30 671.6 171.8 0.30 148.9 0.27 136.6 0.29

900 130.0 0.29 665.6 169.0 0.32 145.4 0.30 136.1 0.31

1200 129.5 0.32 657.8 164.2 0.30 145.1 0.32 135.7 0.36

not modeled within the Tersoff bond order potential we used.

To characterize the mechanical properties of composites of BN nanotubes and
amorphous Si3B3N7, we computed stress strain curves related to tensile load
conditions for the Si3B3N7 matrix and system I to system IV, respectively. The
derived elastic constants are given in Table 3. Depending on the temperature,
our results predict a reinforcement of 27% to 37% for the case of the compos-
ite with the (periodically) infinite BN nanotube (system II). Note that this
constitutes an upper limit for all other systems with equal nanotube/matrix
volume fraction. For system III we obtain a reinforcement of approximately
12–14 % and for system IV we observe a reinforcement of 4–5 %. Note that
the volume fraction of the BN nanotube in system IV is about one half of
the volume fraction in system III. For the systems V to IX with 300 K we
obtain a Young modulus of 141.9 GPa, 148.7 GPa, 133.5 GPa, 134.9 GPa and
137.0 GPa, respectively. The corresponding rates of reinforcement are given
in Figure 16. Note that we see here an almost linear dependency of the rein-
forcement rate on the volume fraction. This shows that, from a macroscopic
point of view, it makes sense to use so-called rule-of-mixtures to quantitatively
describe the reinforcement properties of our composites by a simple formula.
This will be discussed in the following.

For a nanocomposite, a simple macroscopic rule-of-mixtures can be used to
estimate the Young modulus. It depends on the volume fraction Ωf of the
nanotube. This rule reads as

Ec = ΩfEf + (1 − Ωf )Em , (12)
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Fig. 16. Rates of reinforcement of the Young moduli of the systems III–IX with re-
spect to the Young modulus of the Si3B3N7 matrix. Additionally, we have depicted
the prediction with the help of the rule-of-mixtures (ROM) given in (12) and the
extended rule-of-mixtures (EROM) given in (13). Here, to derive the rate of rein-
forcement as a function of the volume fraction only, we set in (13) the area of the
cross-section to two specific constants for systems III–VI and for systems VII–IX,
respectively.

where Ec denotes the predicted Young modulus of the composite and Ef

denotes the Young modulus of the matrix. Following Liu and Chen [27,28] a
more elaborated macroscopic rule-of-mixtures, which takes also the geometry
of the nanotube into account, can be used to estimate the Young modulus of
the systems III–IX. This extended rule-of-mixtures can be written in the form

Eex
c =

(

1

Em

(L − Lc)

L
+

1

Ec

Lc

L

A

Ac

)−1

. (13)

Here, Eex
c denotes the predicted Young modulus of the composite, Lc denotes

the length of the nanotube, L is the length of the system related to the lon-
gitudinal axis, Rin denotes the inner radius of the nanotube, A denotes the
area of the cross-section and Ac is defined as Ac = A− πR2

in, respectively, see
also Figure 17. In Figure 16 we give the predicted rates of reinforcement in
dependence of the volume fraction for systems III–VI and systems VII–IX, re-
spectively. 5 Furthermore, the relative errors of the rule-of-mixtures (12) and

5 Note that for given inner and outer radii Rin and Rout of the nanotube and given
values Em, Ef and A, the extended rule-of-mixtures (13) degenerates to a function
of the volume fraction Ωf only. For the graphs of (13) in Figure 16 we assume
the same values for Em, Ef , Rin and Rout. Furthermore we keep the area A of
the cross-section fixed to 1273 Å2 for systems III–VI and we set A to 5034 Å2 for
systems VII–IX.
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Table 4
The relative errors of the rule-of-mixtures (ROM) given in (12) and the extended
rule-of-mixtures (EROM) given in (13) for systems II–IV.

System II System III System IV

T [K] ROM ROM EROM ROM EROM

300 -0.0284 0.0501 -0.0411 0.0433 -0.0305

600 0.0091 0.0472 -0.0401 0.0538 -0.0175

900 0.0143 0.0604 -0.0288 0.0451 -0.0265

1200 0.0492 0.0635 -0.0293 0.0467 -0.0274

Table 5
The relative errors of the rule-of-mixtures (ROM) given in (12) and the extended
rule-of-mixtures (EROM) given in (13) for systems V–IX.

System V System VI System VII System VIII System IX

T [K] ROM EROM ROM EROM ROM EROM ROM EROM ROM EROM

300 0.064 -0.026 0.060 -0.032 0.026 0.002 0.028 0.004 0.014 -0.010

(13) for the results of the numerical tensile experiments of systems II–IV are
given in Table 4 and that of the systems V–IX can be seen in Table 5. The
relative error with equation (12) and system II is less then 5 %. For system III
and system IV we obtain values between 4.3 % and 6.4 % depending on the
temperature. System V and system VI exhibit a relative error about 6 % and
system VII to system IX exhibit an relative error of less than 3 %. In the case
of system III to system IX the relative error is further reduced by the use of
the extended rule-of-mixtures (13).

Altogether our results show that the simple rule-of-mixtures gives an upper
limit for the Young modulus of the composite. The extended rule-of-mixtures
is more accurate. Note finally that the simple rule-of-mixtures overestimates
the Young modulus of the composite in many cases and the extended rule-of-
mixtures underestimates the Young modulus of the composite in many cases.
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5 Concluding remarks

In this article we studied composites made from Si-B-N matrices and BN
nanotubes by means of molecular dynamics simulations. We employed the
Parrinello-Rahman approach. Load was applied at different temperatures to
derive stress-strain curves and to calculate elastic constants like the Young
modulus and the Poisson ratio. We used the Tersoff potential to model BN
nanotubes and amorphous Si3BN5, Si3B2N6 and Si3B3N7. We analyzed the
short-range, medium-range and long-range order properties of these mate-
rials. Our simulations show that amorphous Si3B3N7 possesses the highest
Young modulus and the largest elastic range. Furthermore, we computed the
mechanical properties of composites of BN nanotubes and Si3B3N7 matrices.
The calculated Young moduli were compared to the predictions from two
different macroscopic rule-of-mixtures. The simple rule, which just takes the
volume fraction of the nanotube into account, can be used for composites with
the (periodically) infinitely long BN nanotube only. The extended rule, which
also takes the geometry of the nanotube into account, can be applied for com-
posites with fully embedded BN nanotubes. It predicts the Young modulus
with a relative error of 5 % or less. For the future a more refined rule-of-
mixtures is needed, which additionally takes the density of cross-links at the
matrix/nanotube interface into account [44].

Our simulation results show that BN nanotubes can be used to reinforce Si-
B-N ceramics, at least theoretically. Now, experimental work is needed to
practically synthesize this suggested composite material and to determine its
characteristic properties.
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