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Abstract

Multi resolution models are getting more and more importance for a scde-sensitive modelli ng
of gpatia data. In principle, they allow the representation o the data & a variety of scdes. Of
speda importance ae alaptive methods, where the resolution dees not need to be uniform
but may be variable. Then, error indicators are used to control the loca resolution d the
model. In this paper, we show the @nstruction and computation d such error indicators for
multiresolution dgital elevation models based on recursive triangle bisedion for different
applications.

1. Introduction

The amourt of digital elevation data eg. avail able from satellit e measurements is increasing
constantly. Consequently, many applications sich as digital cartography, geographic
informations systems, processmodelling and simulation, a data visuali zation encourter their
own spedfic problems related to scde when processng the data. On one hand, these problems
may result from the sheer amourt of data avail able requiring efficient data representation and
compresson. On the other hand, many important quantities, such as dope and curvature, are
clealy scale-dependent and reed to be handed carefully. Multiresolution models can address
such problems.

We will here consider the @nstruction d multiresolution dgital elevation models for regular
gridded data. The main ingredient of our method are triangulations generated by reaursive
bisedion. These triangulations may be alaptive, if triangles are refined norruniformly. Then,
so-cdled error indicators control the local refinement since there will be a approximation
error which occurs when a triangle is not refined. The focus of this paper will be on the
seledion and computation d such error indicaors. Thereby, we will concentrate on a few
spedfic goplication problems requiring geometric error control, inclusion d constraints, and
preservation d topogaphy. We will not consider measurement and pasitional uncertainties
but assume that the input datais free of error.

The remainder of this paper is organized as follows. Sedion 2 shortly reviews the generation
of multiresolution dgital elevation models based on adaptive triangulations generated by
reaursive bisedion. Sedion 3will show the cnstruction and usage of error indicators based
on the wavelet expansion d the DEM. Different application problems and examples are then
addressed in Section 4.Sedion 5concludes with further remarks and appli cations of the used
methoddogy.



2. Multiresolution Digital Elevation Models

A multiresolution dgital elevation model (DEM) is a representation d a given inpu DEM
from which is it posgble to extrad approximate DEMs with dfferent levels-of-detail . These
approximate models can be seen as representations of the inpu DEM on a @arser scde.
Therefore, besides the resolution (e.g. mesh width), a second @rameter ¢ is obtained which
indicates the gproximation error, e.g. the norm of the difference between the inpu and the
approximation. Clealy, the norm will depend onthe type of application. The parameter ¢
defines a scale dimension kesides the wordinate diredions x and y. Therefore, elevation can
be seen asafunction d threeparameters, x,y, and € . An owverview of multiresolution dgital

elevation models and appli cations can be foundin (De Floriani et al. 1999,Dutton 199).

We will now shortly explain the @nstruction o multiresolution models based onreaursive
bisedion triangulations. These triangulations have been extensively used for adaptive grid
refinement during the numericd solution o partial differential equations (Rivara 1981).
Basically the same gproach has recently aso been applied to the representation d terrain
data (Lindstrom et. al. 1996,Gerstner 199). They are dosely related to triangulations of the
leaves of arestricted quadtree However, recursive bisedion triangulations are more flexible
than quedtrees snce they use twicethe number of grid levels. Also, hierarchicd triangulations
have agreder potential for the multiresolution approximation d irregular distributed data
points, although we will focus here onregular gridded data sets.

Figure 1: Bisedion d atriange.

The main ideais to start with ainitial triangulation S° of level 0 and then to construct finer
triangulations S'** reaursively by splitti ng each triangle T O'S' in two. In the case of regular
gridded data one can use isoscdes triangles T = (v,v,V,) with aright angle & v,. Then, by
the seledion o the midpant of the longest edge e (T) = (v,v;) as the refinement vertex

V. (T), two new triangles T, = (V,V,,V,) and T, = (V,V,,V,) aregenerated (Figure 1).
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Figure 2: Hierarchical trianguation andcorrespondng hnary trees.
Clealy, by this refinement procedure abinary tree hierarchy isinferred onthe triangles. Note

that in the interior of the domain, al refinement vertices will be shared by two triangles
(Figure 2).



Figure 3: Hangng noas will | eadto cracksin the DEM.

Now, an adaptive triangulation can be defined by the selection d a subtree of the triangle
binary tree However, such triangulations can contain hanging nodes which occur if two
triangles dharing a refinement vertex are nat refined conformingly (Figure 3). Hanging nodes
are undesirable because they can lea to cradks in the DEM since the surface defined by the
triangulation is no more continuows. Cradks are undesirable, since they will result in hdes
when drawing the DEM, infer discontinuities in isolines, and generally cause problems in all
algorithms assuming continuity of the surface

One posshility to avoid hanging noce is to ensure that, whenever a triangle is refined, the
triangle sharing its refinement vertex isrefined as well. This can be adieved by the definition
of error indicators n onthe refinement vertices, i.e. N(T) =n(v,,(T)), and by selection d all
triangles where n(T) > ¢ for some prescribed threshald ¢ . If the error indicator values fulfill
the cndtion

n(T) = max{n(T,), n(T,)}

for all triangles TOS' with level | <I__, no kanging nodes can occur for al possble values
of €. If an error indicaor n does nat fulfil this condtion it cen easily be ajusted in a
precomputing step. In a level-wise bottom-up traversal of the hierarchy it is possble to
construct the minimal error indicator n larger than or equal to n by setting

n(T) = max n(T), A(T,), (T,) }.

This framework allows a grea freedom for the choice of an initial error indicaor n. Thisis
necessary, sincedifferent applicaions will typically require different types of error indicators.
Since n(T) =n(T), error bounds for n will also hdd for 1.

3. Wavelet Representation

In order to be ale to give mncrete mnstructions for possble aror indicaors n, it is first
necessary to define asurface model. Here we will use apiecewise linear interpolation inside
ead triangle which is uniquely defined by the devation values at its vertices. Together with
the refinement rule, we have thereby defined a hierarchicd basis which is in fad a
biorthogonal wavelet basis (Cohen, Daubediies, Feauveau 192). The wavelet-transformed
DEM can be written as a continuots elevation function f ,

f(x) = IZ .nZ i [, (X)



with wavelet basis functions ¢, (x) and wavelet coefficients c,. The loop for the indices i

runs over the n, vertices of the initia triangulation and over all n, refinement vertices for
level 1>0 .

Figure 4: Pyramidal hat functions as wavdet basis.

If the DEM contains no hanging nodes, the wavelet functions are scded and transated
versions of two mother wavelets (Figure 4). The left basis function hes the shape of a four-
sided pyramid andis used in oddlevels|. Theright basis functionisused in even levelsandis

ascded by J2 androtated by 45 degrees version d the left one.

The wavelet coefficients ¢, can be mmputed by linear combination d the devation values e
on the refinement edge wrrespondng to theindex i,

G, == 5 Vy) + 8V, ) = &(Vs).

An approximate DEM f, correspondng to an adaptive triangulation constructed as $iown in
the previous sdionisdefined by setting al coefficients ¢, where ﬁ(vref) < ¢ to zero, that is

f.(x)= Z G [ (x).
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4. Error Measurement and Examples

With the (piecevise linea) surfacemodel of the previous sdion in mind, we can now take a
closer look at possble methods of error measurement. Of course, there is a great variety of
methods that can be used. We will here restrict ourselves to geometric error measurement but
also consider inclusion d constraints and preservation d topography.

4.1. Geometric Error Measur ement

Let us at first assume, that there is anorm | ] measuring the geometric gpproximation error.
There is a large variety of norms that are commonly used for the mmputation d errors.
Popuar examples are integral norms such as the Lebesgue norms L. For p=oo this norm
corresponds to the maximum verticd distance of the gppaximation and the original, for p=1

to the integral of the &solute difference DEM. Other geometric norms can involve derivatives
(such as Sobdev narms), discrete aurvature computations, or Haussdorff measures.

Let us recal, that the diff erence between the original DEM and the goproximation is defined
by f,(x)- f(x). Therefore, the global norm of the gproximation error can be wmputed,
respedively estimated by
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Liin(Vyer) <€

< Y o e ).

Lizn(Veer) <&

The aror indicaor n reflectsthe locd application d thisnorm, i.e. the restriction o the norm

to the quadrilateral formed by a pair of triangles having a cmmon refinement vertex.
Remember that error indicaor values are defined on the vertices of the hierarchical
triangulation. Therefore, n shoud measure the aror on bdh triangles dharing the refinement
vertex. For an overview of error estimation techniques see(Verfuhrt 1996.

As an example we @nsider a part of the global gtopo30data set of the US Geological Survey
showing the North Sea ad its surroundngs. We show approximations based onthe L,-norm

(Figure 6). It is clearly visible that in rough, mountainous areas uch as in Norway and
Scotland more triangles have to be used to keep the global error bourded while in relatively
flat areas sich asin nathern Germany and the Netherlands, larger triangles can be used.

4.2. Constraints

Some measures of importance are nat easily defined using a geometric norm such as in the
previous example. For instance, one may want to focus on a few areas of greder interest.
Such measures of importance ae typically modelled using constraints. It is very easy to
include anstraints into o multiresolution dgital elevation model while preserving the
continuity of the surface. Thisis smply dore by increasing error indicator values in selected
aress.

Let us consider the North Sea example again. Using orly the geometric norm, coastlines are
somehow nat resolved satisfactory since acoarse gproximation d flat coasts does not lead to
a large eror. Depending on the gplicaion, havever, coastlines may be important. Since
ocean areas are marked in the data set, constraints on coastlines can be impaosed easily by the
multi plication d correspondng error indicaor values with a cnstant fadtor (Figure 7).

4.3. Preservation of Topography

Espeadally in hydrologicd modelling and simulation, changes in the topography of the DEM
may yield surprising and urwanted effeds. Small changes in elevation values can lead to
large dhanges in catchment size and structure.
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Figure 5: The four topdogical caseswhere aitical pointscan aise.

Topagraphy can be defined by the set of critica points. A critical point is defined asapaint in
space where an isoline dhangesits topdogy. Sinceour datamodel is pieewise linea, criticd
points can arise only at vertices of the triangulation. Multiresolution DEMs, however, require
spedal care. A paint in space which is nat critical on the finest resolution may become aiti cal
ona arser resolution. Therefore, criticd points have to be defined hierarchicdly.



Whenever a pair of triangles is refined, the common refinement which is inserted in the DEM
is a candidate for a aiticd point on the airrent level. The four possble cases where the
refinement vertex isredly criticd are depicted in (Figure 5). A “-” indicates, that the devation
value & this vertex is smaller than the devation value of the refinement vertex, a“+" that it is
larger. By setting error indicaor values n at criticd pointsto o, any approximate DEM will

have the same topographical structure atheinpu DEM for al valuesof €.

As an example, we onsider a DEM (courtesy of LVerA Rheinland-Pfalz) in western
Germany in the vicinity of a lake (Laacher See). In (Figure 8) we show isolines and the
correspondng adaptive triangulations for the L_-norm withou topography preservation. We

seethat for the warse triangulation the lake in the foregroundwill get an opening at its upper
border. With topagraphy preservation, al isolines will retain their structure and such
unwanted effects are diminated (Figure 9).

5. Concluding Remarks

In this paper we have mnsidered the wnstruction d continuous multiresolution dgital
elevation models based on adaptive hierarchicd triangulations. We have aressed the
computation d error indicaors using the correspondng wavelet expansion d the DEM. We
have dso shown howv the @nstruction can be extended to hande wnstraints as well as
preservation o topogaphy.

Hierarchicd triangulations have dready been succesdully used for the handling of large-scale
datain spatial data bases, data cmpresson and interadive visuali zation. Further applicaions
of the methoddogy are the mmputation d scde-dependent quantities such as dope and
curvature, as well as anadysis and frada classficaion d landform. In the future,
multi resolution DEMs will also be used for scd e-sensitive processmodelli ng and simulation.
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Figure 6: Adapivetriangudations and correspondng ill umination shaded DEMs of the North
Sea area based onthe L, -normwithou focus on coastli nes.
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Figure 7: Adapivetriangdatiosn andcorrespondng ill umination shaded DEMs of the North
Sea area based onthe L, -normwith focus on coastlines.
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Figure 8: Adapivetrianguations and correspoondng hypsoshaded DEMs with isoli nes of
the Laacher Seearea based onthe L -normwithou topogaphy preservation.
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Figure 9: : Adaptivetrianguations and correspondng hypsoshaded DEMs with isoli nes of
the Laacher Seearea based onthe L -normwith topogaphy preservation.



