Research Group of Prof. Dr. M. Griebel
Institute for Numerical Simulation

Guanglian Li, Ph.D.

Address: Institut für Numerische Simulation
Wegelerstr. 6
53115 Bonn
Office: We4 0.007
Phone: +49 228 739847

Former member of the institute

Now at Department of Mathematics, Imperial College London (


Research Interests

Curriculum Vitae: CV.pdf


[1] M. Griebel and G. Li. On the decay rate of the singular values of bivariate functions. 2017. Accepted by SIAM J. Numer. Analysis. Also available as INS preprint No. 1702.
bib | .pdf 1 ]
[2] T. Kluth, B. Jin, and G. Li. On the Degree of Ill-Posedness of Multi-Dimensional Magnetic Particle Imaging. 2017. Submitted to Inverse Problems, also available as INS preprint No. 1718.
bib | .pdf 1 ]
[3] G. Li. Low-rank approximation to heterogeneous elliptic problems. 2017. INS preprint No. 1704.
bib | .pdf 1 ]
[4] G. Li and K. Shi. Upscaled HDG methods for Brinkman equations with high-contrast heterogeneous coefficient. 2017. INS preprint No. 1716.
bib | .pdf 1 ]
[5] V. M. Calo, Y. Efendiev, J. Galvis, and G. Li. Randomized Oversampling for Generalized Multiscale Finite Element Methods. Multiscale Model. Simul., 14(1):482-501, 2016.
bib | arXiv ]
[6] E. Chung, Y. Efendiev, W. T. Leung, and G. Li. Sparse generalized multiscale finite element methods and their applications. International Journal for Multiscale Computational Engineering, 14(1), 2016.
bib ]
[7] G. Li, D. Peterseim, and M. Schedensack. Error analysis of a variational multiscale stabilization for convection-dominated diffusion equations in 2d. ArXiv e-prints, 2016. Also available as INS Preprint No. 1612.
bib | arXiv | .pdf 1 ]
[8] G. Li and Y. Xu. A convergent adaptive finite element method for cathodic protection. Computational Methods in Applied Mathematics, 2016. accepted.
bib ]
[9] A. Wilson, W. Du, G. Li, A. Moosavi, and C. S. Woodward. On metrics for computation of strength of coupling in multiphysics simulations. In Topics in Numerical Partial Differential Equations and Scientific Computing, pages 137-176. Springer New York, 2016.
bib ]
[10] D. L. Brown, Y. Efendiev, G. Li, and V. Savatorova. Homogenization of high-contrast brinkman flows. Multiscale Modeling & Simulation, 13(2):472-490, 2015.
bib | DOI | arXiv | http ]
[11] E. Chung, Y. Efendiev, G. Li, and M. Vasilyeva. Generalized Multiscale Finite Element Method for problems in perforated heterogeneous domains. to appear in Applicable Analysis, 255:1-15, 2015.
bib ]
[12] Y. Efendiev, S. Lee, G. Li, J. Yao, and N. Zhang. Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method. to appear in International Journal on Geomathematics, 15:733-755, 2015.
bib ]
[13] J. Galvis, G. Li, and K. Shi. A generalized multiscale finite element method for the brinkman equation. Journal of Computational and Applied Mathematics, 280(0):294 - 309, 2015.
bib | DOI | http ]
[14] E. T. Chung, Y. Efendiev, and G. Li. An adaptive GMsFEM for high-contrast flow problems. Journal of Computational Physics, 273(0):54-76, 2014.
bib | DOI | http ]
[15] Y. Efendiev, J. Galvis, G. Li, and M. Presho. Generalized multiscale finite element methods. nonlinear elliptic equations. Commun. Comput. Phys., 15:733-755, 2014.
bib ]
[16] Y. Efendiev, J. Galvis, G. Li, and M. Presho. Generalized multiscale finite element methods: Oversampling strategies. International Journal for Multiscale Computational Engineering, 12(6):465-484, 2014.
bib ]